
 

 

 

 
 

  

 
 

MULTOS SmartDeck v3.7.0.0 

Developer Reference Manual 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 2 

 

Contents 
 

Contents ................................................................................................................................................ 2 

Welcome To MULTOS SmartDeck ........................................................................................................... 7 

Welcome ......................................................................................................................................................... 7 

What is SmartDeck? ......................................................................................................................................... 7 

About this manual ........................................................................................................................................... 7 

Getting Started Guide ............................................................................................................................ 8 

Eclipse Installation ........................................................................................................................................... 8 

GNU Tools ....................................................................................................................................................... 8 

SmartDeck ....................................................................................................................................................... 8 

Environment Variables ..................................................................................................................................... 8 

Installing the card component manually ........................................................................................................... 8 

Eclipse Configuration ....................................................................................................................................... 8 

Creating a new Project in Eclipse .................................................................................................................... 10 

Select Error Parsers ........................................................................................................................................ 10 

Debugger Setup ............................................................................................................................................. 11 

Post Build Scripts ........................................................................................................................................... 14 

Executing APDUs............................................................................................................................................ 15 

Conditional Breakpoints ................................................................................................................................. 16 

Watchpoints .................................................................................................................................................. 17 

Supported Debugger Features ........................................................................................................................ 17 

Currently Unsupported Debugger Features ..................................................................................................... 17 

MULTOS basics .................................................................................................................................... 18 

Application design and architecture ............................................................................................................... 18 

Application identifiers .................................................................................................................................... 18 

About APDUs ................................................................................................................................................. 18 

Application selection ..................................................................................................................................... 19 

Programming Topics ............................................................................................................................ 20 

Attributes ...................................................................................................................................................... 20 

Attributes interpreted by SmartDeck .............................................................................................................. 20 

Differences between MULTOS implementations ............................................................................................. 22 

Atomicity and data item protection ................................................................................................................ 22 

The C compiler ............................................................................................................................................... 23 

Troubleshooting ................................................................................................................................... 24 

Simulator and smart card problems ................................................................................................................ 24 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 3 

 

Manual installation of the card component .................................................................................................... 24 

SmartDeck Components List ................................................................................................................. 25 

Compiler Driver Reference .................................................................................................................... 27 

File naming conventions ................................................................................................................................ 27 

Translating files ............................................................................................................................................. 27 

Command syntax ........................................................................................................................................... 28 

Verbose execution ......................................................................................................................................... 30 

Finding include files ....................................................................................................................................... 30 

Macro definitions .......................................................................................................................................... 30 

Linking in libraries .......................................................................................................................................... 30 

Building archives ............................................................................................................................................ 31 

Creating ALU’s ............................................................................................................................................... 31 

The Simulator ...................................................................................................................................... 32 

Command syntax ........................................................................................................................................... 32 

Process Events ............................................................................................................................................... 34 

Simulation status ........................................................................................................................................... 35 

Working with Cards ............................................................................................................................. 36 

Managing card applications using hterm ........................................................................................................ 36 

Loading and deleting applications .................................................................................................................. 37 

Command-line options ................................................................................................................................... 39 

Using the SDT component .............................................................................................................................. 40 

Background information ................................................................................................................................ 41 

Complete examples of the SDT component .................................................................................................... 44 

The Assembler ..................................................................................................................................... 45 

Command syntax ........................................................................................................................................... 45 

The C Compiler ..................................................................................................................................... 46 

Command syntax ........................................................................................................................................... 46 

The Linker ............................................................................................................................................ 48 

Linker function and features .......................................................................................................................... 48 

Command syntax ........................................................................................................................................... 48 

Linker output formats .................................................................................................................................... 49 

Laying out memory ........................................................................................................................................ 49 

Linkage maps ................................................................................................................................................. 50 

Linking in libraries .......................................................................................................................................... 50 

The Archiver......................................................................................................................................... 51 

Automatic archiving ....................................................................................................................................... 51 

Command syntax ........................................................................................................................................... 51 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 4 

 

Creating an archive ........................................................................................................................................ 51 

Listing the members of an archive .................................................................................................................. 52 

The Object File Lister ............................................................................................................................ 53 

Command syntax ........................................................................................................................................... 53 

Listing section attributes ................................................................................................................................ 54 

The RSA Key-Pair Generator ................................................................................................................. 55 

Command syntax ........................................................................................................................................... 55 

Binary output files ......................................................................................................................................... 55 

C format output files ...................................................................................................................................... 56 

ALU Generation ................................................................................................................................... 57 

Command syntax ........................................................................................................................................... 57 

ALC / ADC Generation .......................................................................................................................... 59 

Command syntax ........................................................................................................................................... 59 

Example ALU and ALC generation commands for Developer Cards .................................................................. 61 

ALU generation commands for Community Cards ........................................................................................... 61 

MULTOS File Dump .............................................................................................................................. 62 

Command syntax ........................................................................................................................................... 62 

Example commands ....................................................................................................................................... 63 

The Hex Extractor................................................................................................................................. 64 

Command syntax ........................................................................................................................................... 64 

Supported output formats ............................................................................................................................. 64 

Preparing images for download ...................................................................................................................... 64 

Preparing images for ROM ............................................................................................................................. 65 

Extracting parts of applications ...................................................................................................................... 65 

Codelets ............................................................................................................................................... 66 

Your first codelet ........................................................................................................................................... 66 

Codelets that need static data ........................................................................................................................ 68 

Caveats.......................................................................................................................................................... 72 

How to customise codelets and patch up broken code .................................................................................... 73 

The overhead of codelet calls ......................................................................................................................... 74 

Setting up Eclipse for Codelet Development .......................................................................................... 76 

Basic Codelets ................................................................................................................................................ 76 

Advanced Codelet Development .................................................................................................................... 77 

Assembler User Guide .......................................................................................................................... 80 

The format of an assembly statement ............................................................................................................ 80 

Constants ...................................................................................................................................................... 81 

Comments ..................................................................................................................................................... 82 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 5 

 

Include files ................................................................................................................................................... 83 

Registers........................................................................................................................................................ 83 

Addressing Modes ......................................................................................................................................... 84 

Labels, Variables and Sections .............................................................................................................. 85 

Label names .................................................................................................................................................. 85 

Symbolic constants or equates ....................................................................................................................... 85 

Using type specifiers ...................................................................................................................................... 85 

Labels ............................................................................................................................................................ 86 

Defining and initialising data .......................................................................................................................... 86 

Aligning data ................................................................................................................................................. 87 

Filling areas ................................................................................................................................................... 87 

Using sections ................................................................................................................................................ 88 

Data Types and Expressions ................................................................................................................. 89 

Built-in types ................................................................................................................................................. 89 

Structure types .............................................................................................................................................. 89 

Structured allocation and field access ............................................................................................................. 90 

Array types .................................................................................................................................................... 90 

Pointer types ................................................................................................................................................. 91 

Byte and word extraction operators ............................................................................................................... 92 

Index operator ............................................................................................................................................... 92 

Bit-wise operators ......................................................................................................................................... 92 

Arithmetic operators ..................................................................................................................................... 93 

Relational operators ...................................................................................................................................... 93 

Logical operators ........................................................................................................................................... 94 

Miscellaneous operators ................................................................................................................................ 94 

Block Structure ..................................................................................................................................... 96 

Two types of block ......................................................................................................................................... 96 

Function blocks .............................................................................................................................................. 96 

Blocks, scope, and labels ................................................................................................................................ 98 

Modules and Libraries .......................................................................................................................... 99 

Assembler features ........................................................................................................................................ 99 

Exporting symbols ......................................................................................................................................... 99 

Importing symbols ......................................................................................................................................... 99 

Other terminology for import and export ..................................................................................................... 100 

Using libraries .............................................................................................................................................. 100 

Macros, conditions and Loops ............................................................................................................ 101 

Conditional assembly ................................................................................................................................... 101 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 6 

 

Nested conditionals ..................................................................................................................................... 101 

Typical uses for conditional assembly ........................................................................................................... 102 

Macros ........................................................................................................................................................ 103 

Loops .......................................................................................................................................................... 105 

Mnemonic Reference ......................................................................................................................... 106 

Instructions ................................................................................................................................................. 106 

C User Guide ...................................................................................................................................... 113 

Preprocessor ............................................................................................................................................... 113 

Data types ................................................................................................................................................... 113 

SmartDeck C and the MULTOS environment ................................................................................................. 114 

Selecting where data are stored ................................................................................................................... 115 

Bytecode Substitution for Function Calls ...................................................................................................... 116 

Assembler inserts ........................................................................................................................................ 117 

Assembler Interfacing .................................................................................................................................. 118 

Naming conventions .................................................................................................................................... 118 

Calling conventions ...................................................................................................................................... 119 

Using assembler directives for interfacing .................................................................................................... 120 

C Library Reference ............................................................................................................................ 122 

Using the C library........................................................................................................................................ 122 

Cryptographic functions ............................................................................................................................... 122 

APDU control ............................................................................................................................................... 122 

Arithmetic functions .................................................................................................................................... 123 

Manipulating the CCR .................................................................................................................................. 123 

MULTOS operating system functions ............................................................................................................ 123 

DES library functions .................................................................................................................................... 123 

RSA library functions .................................................................................................................................... 124 

Standard C library functions ......................................................................................................................... 125 

C Compiler Diagnostics ....................................................................................................................... 126 

Pre-processor warning messages .................................................................................................................. 126 

Pre-processor error messages ...................................................................................................................... 126 

Compiler warning messages ......................................................................................................................... 128 

Compiler error messages .............................................................................................................................. 128 
 

 
  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 7 

 

Welcome To MULTOS SmartDeck 
 

Welcome  

Welcome to MULTOS SmartDeck, the complete application development system for MULTOS.  SmartDeck allows 
you to use C and assembler to prepare applications that run on the MULTOS high security operating system.  

This introductory chapter covers the contents of and conventions used in this manual: it should be read by 
everyone, but...  

What is SmartDeck?   

SmartDeck is a programming system which runs on MS Windows-based computers and is based around the Eclipse 
IDE. Programs which are prepared on these host machines using the tools in this package and are executed, not on 
the host, but on a MULTOS smart card or micro-controller.  

C compiler  

SmartDeck C is a faithful implementation of the ANSI and ISO standards for the programming language C. We have 
added some extensions that enhance usability in the MULTOS environment.  

Because smart cards are small, memory-limited devices, we have to make a few concessions.  For instance, the ANSI 
C input/output library is much too large for a smart card environment and a smart card has no way to display 
anything, so this implementation of C does not provide it.  

Assembler  

SmartDeck assembly language is a superset of the original MULTOS “MDS” assembly language. SmartDeck does not 
support the “MALT” assembly language syntax.  

and more...  

As well as providing cross-compilation technology, SmartDeck provides a PC-based simulation of MULTOS which is 
interfaced with the Eclipse IDE allowing you to debug your application quickly.  

A set of tools for generating MULTOS standard application load units and a facility for loading and deleting 
applications on MULTOS cards provide the final stage of the software development lifecycle.  

 

About this manual  

There are five sections in this document:  

• Getting Started Guide covers installing SmartDeck on your machine and setting up MULTOS projects within 
the Eclipse IDE. 

• Tools Reference Guide contains detailed reference material about the SmartDeck tools. 

• Codelet Development Guide contains information on how to build and use Codelets.  

• Assembler User Guide contains detailed documentation covering how to use the assembler, the assembler 
notation, an instruction set reference, macros, and other assembler features and extensions.  

• C User Guide contains documentation for the C compiler, including syntax and usage details and a 
description of the library functions supplied in the package.  

 
What we don’t tell you...  

This documentation does not attempt to teach C programming or provide in-depth information on the Eclipse IDE. 
And similarly the documentation doesn’t cover MULTOS or smart card application development in any great depth. 
We also assume that you’re fairly familiar with the operating system of the host 
computer being used.    



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 8 

 

 
Getting Started Guide 

 

Eclipse Installation 

The MULTOS plugin for Eclipse has been developed for Eclipse CDT 2018-12 or later and JRE version 8 or greater. If 
you register to download SmartDeck from https://multos.com then these packages can be automatically installed 
for you using the Installation Manager. 

 

GNU Tools  

The plugin makes use of GNU make.exe and rm.exe. For convenience, versions of both these tools are included in 
the SmartDeck installation in the bin directory. 

 

SmartDeck  

MULTOS SmartDeck is distributed as a ZIP file. It does not require a hardware protection device and is not copy 
protected. If you are not using the provided Installation Manager, please install Eclipse before installing SmartDeck. 
Because Eclipse can be installed in any location, please manually copy the MULTOS plugin to the plugins folder in 
Eclipse. 

 

Environment Variables 

To make the tools available, you must add the bin directory, where the executable program files are installed, to 
your PATH variable.  You do this by setting the “System Environment Variables” on your PC. Note that the 
Installation Manager installs SmartDeck to c:\program files (x86)\smartdeck by default and sets the environment for 
you. 

 

Likewise, you must add the path to your include directory to the INCLUDE environment variable. 

 

 

Installing the card component manually  

The COM component we use to control the MULTOS card is registered by the installation program. Should you need 
to install the component manually, you can do so using the standard Windows program regsvr32.  The command is:  
regsvr32 /s htermlib.dll  

The program will display a dialog box which tells you that the component installed correctly and that the registry has 
been altered to make the component known to client software.  If you’re curious, you can examine the interface to 
the SWT component using the Microsoft OLE viewer to decode the type library.  
 

It is recommended to use the Installation Manager as this is handled automatically. 

 

Eclipse Configuration 

Once installed, you need to configure Eclipse to work with the MULTOS SmartDeck tools. 
 

The c:\temp\demo-workspace folder is a completely set up, ready to use, Eclipse workspace containing an example 
application, eloyalty. You can immediately click on the project and click the debug icon. If you have installed 
SmartDeck and the other tools correctly, this will invoke the compiler, linker and debugger; 

https://app.multos.com/


 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 9 

 

the application will break on main(). Note: If SmartDeck is installed to anywhere other than the default location 
(c:\program files (x86)\SmartDeck), you may need to edit the path to hsim.exe in the debugging.txt file. 

The rest of this section tells you how to set up a workspace and a new project from scratch. 
 
 

Error Parsers 

In order to be able to jump to error / warning locations in source code after compiling, you need to tell Eclipse how 
to parse the compiler output.  These have to be manually defined in the workspace and the dialogue to use is 
Window->Preferences->C/C++->Build>Settings. 

  

The regular expression to enter for error parsing is (.*?)\((\d*)\):\s(.*error.*) . 

For warnings use (.*?)\((\d*)\):\s(.*warning.*) . 

  

The screenshot below shows the setup. 

 
 

Debugging Timeouts 

Please be aware that the default debugger timeouts set in the Eclipse IDE may need to be 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 10 

 

lengthened. This can be done in Window->Preferences->C/C++->Debug->GDB (this option only appears once you 
have created your first debugging config). 

 

Disabling Unwanted CDT checking 

The Eclipse CDT environment can report invalid syntax errors that don't match up with the actual compiler. To get 
rid of these unwanted messages uncheck all the checkboxes for C/C++ Indexer Markers in Window->Preferences-
>General->Editors->Text Editors->Annotations 

 

Creating a new Project in Eclipse 

In the Eclipse Project Explorer , select File->New->C Project. In the dialogue presented type in a project name, select 
MULTOS Project Type and the Debug toolchain. Then click Finish. 

 

  
 

 

Select Error Parsers 

The globally created error parsers need to be selected for each project created. To do this, select your project in 
Project Explorer then select Project->Properties->C/C++ Build->Settings and tick the MULTOS error parser 
previously created. 

 
  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 11 

 

 
 
 

Debugger Setup 

This is slightly more complex to set up because of the flexibility that has been built in to the system. 

 

Debugging Commands file 

Firstly, in your project, create a text file called, for example, “debugging.txt”. The first line of the file should be the 
full path to hsim.exe (or indeed any MULTOS simulator that supports the required interface). The second line should 
be the AID of the application to be debugged (in some simulators, not hsim, a comma separated list of AIDs can be 
provided). 

  

Subsequent lines of the file are the command line parameters you wish to use with the simulator. For hsim these are 
the usual ones to select the application and send APDUs. For example, the file may look like  this: 

  

c:\program files (x86)\smartdeck\bin\hsim.exe 

f3000003 

-selectaid f3000003 

; This is a comment as the first character on the line is a ; 

-apdu 7001000002 

; This is another comment. 

-apdu 7002000002 

  

You could include any of the other switches supported by hsim, but the name of the debug .hzx file is passed 
automatically, along with the switches required to support remote debugging.   

 

The debugger sets the environment variable %CWD% to the root directory of the Eclipse project. %CWD% can be 
referenced from the debugging command file and from within any batch files that the 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 12 

 

simulator may call (where applicable). The working directory of the debugger process (and hence the simulator) is 
set to this directory too. 

 

If the application you are debugging delegates to other applications, then you must include the full path to the .hzx 
files of the delegate applications as a parameter to hsim. 

 

By default, the debugger stops at the beginning of main() for every APDU being executed. You can prevent this 
behaviour by adding the following to the end of the debugging command file: 

[OPTIONS] 

NOBP 

 

Eclipse Debugging Configuration 

The last thing to do is to configure the debugger for your project. Select your project again in Project Explorer and 
then Run->Debug Configurations . 

  

Under C/C++ Application create a new config using the ‘New’ button. 

  

Fill in the C/C++ Application box with ‘Debug/<projectname>.hzx’  

 

 
 

On the debugging tab, change the GDB debugger field to mdb and select your debugging file created earlier as the 
GDB command file. 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 13 

 

  
 

You are now ready to add ‘C’ source files and header files to your project. 

 

Note: You can also copy then edit existing debug configurations, so once you’ve set up a debug config it is quicker 
for subsequent projects. 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 14 

 

 

Post Build Scripts 

In addition to the standard build operations carried out by the MULTOS Toolchain, you may wish to add other steps 
such as generating an ALU and ALC using the halugen and melcertgen tools. A generic way to do this in Eclipse is to 
define a customer Builder for the project that is a generic script. 
 

 
 
 
 
 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 15 

 

 

Executing APDUs 

When using hsim, there are three methods of sending APDUs to the application. The first is by adding –apdu 
command line switches in debugging.txt as shown above. Once all these have been executed, or if none are 
specified, APDUs can be added via the Eclipse Debugger Console window asshown below: 

 

  
 

Alternatively, APDUs may be sent to hsim from hterm. To start this, specify the –ifd switch in debugging.txt (see 
hsim command line options) and run hterm with the –sim and –interact switches (see hterm command line options). 

 

When waiting for an APDU, the debugger is in a suspended state. After entering the APDU 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 16 

 

and hitting the Enter key, it is necessary to click the Resume button (F8) to restart the debugger. 

 

APDU responses are indicated with ---> . SW12 is shown in brackets. 

 

Other simulators may use other mechanisms for application selection and APDU entry. 

 

Conditional Breakpoints 

To add a condition to a breakpoint, right click on it and select the Breakpoint Properties… option. The supported 
features, Condition and Ignore count, are on the Common page. 
 

 
 
Condition can be in one of the following forms 

• expression1 = expression2 

• expression1 = literal value 

• expression1 != expression2 

• expression2 != literal value 
 
For example: 

• x = 3 

• bCount = 0x0A 

• abData[bCount] != abData[3] 
 

Note: 

• == means the same as = 

• The spaces are important and must be present 

• The comparison is done using a simple string comparison of the left and right hand sides of the operator, the 
format of any evaluated expression being determined by the type of the data. So, in the example 

o bCount = 0x0A 
the condition would not be true if bCount was evaluated as the decimal value “10”. The default 
representation of an expression can be seen by adding to the Expressions window or hovering over it. Also, 
the Debugger Console window in Eclipse outputs the result of conditional breakpoint evaluations. 

 
Ignore count is the number of times the breakpoint will be ignored before execution halts. If a Condition is also set 
then it is the number of times that the breakpoint condition has been met that will be ignored. 
 
 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 17 

 

Watchpoints 

A single watchpoint may be set which will trigger a break in execution if the variable being watched is written to. 
Watchpoints are set in Eclipse by selecting the variable declaration (NOT local variables) and selecting the 
 Run->Toggle Watchpoint menu option. The Debugger Console window providers information on Watchpoint 
setting. 
 

Supported Debugger Features 
• APDU entry via a “script”, the Debugger Console or hterm (for hsim) 
• Step over and in 
• Moving up / down the call stack 
• Breakpoints (with support for conditions and ignore counts) 
• Watchpoints 
• Variable viewing (locals and parameters) 
• Global viewing via Expressions window 
• Hovering over a variable to get its value 
• Viewing register values 
• “View Memory” option for a variable 
• Inclusion of .asm files (build and debug) 
• Editing memory locations. 
• Codelet development and debugging 
• Debugging multiple loaded applications in one session (and delegation between them) 
• Memory viewing 

• A literal address, e.g. 0x8010 
• A register, e.g. $DB 
• A pointer variable name 
• An address expression of the format &(x) or &x where x is a simple variable name (local or global) 

Currently Unsupported Debugger Features 

• Editing values 
• Disassembly view 

 
 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 18 

 

MULTOS basics  
 

When a MULTOS card is inserted into an interface device (IFD), the IFD selects an application on the card and sends 
to it a series of commands to execute. Each application is identified and selected by its application identifier (AID). 
Commands are formatted and transmitted in the form of application protocol data units (APDUs). Applications 
reply to each APDU command with a status word indicating the result of the operation, and optionally with data.  

 

Application design and architecture  

Card applications do not differ from regular desktop applications in the way they are designed and developed.  As 
with any software project, critical card applications should go through specification, design, and implementation, 
with validation and verification at each stage.  Of course, there are different requirements for card applications, 
such as how security is managed, what to do if the card is torn from the reader, and so on, but the design process is 
unchanged.  

 

Application identifiers  

On the desktop, applications are held in files, and each file has a name.  With smart cards, each application is 
identified and selected by an application identifier (AID).  This naming convention is standardised by the 
International Standards Organisation and is defined in ISO 7816.  

An AID is a sequence of bytes between 5 and 16 bytes in length.  It consists of:  

• National registered application provider.  This is known as a RID, and its length is fixed at five bytes.  

• Proprietary application identifier extension. This is known as a PIX, and its length varies between zero and 11 
bytes.  
ISO controls the assignment of RIDs, and each company manages the assignment of PIXs for AIDs.  Each RID is 
unique, and you can obtain a RID for your company from ISO.  
 

We’ll pick a fictitious RID and PIX for our application’s AID:  

• RID: A0 01 02 03 04 (the required five bytes)  

• PIX: 00 01 (two bytes)  
 

 

About APDUs  

APDUs are the way the card and terminal communicate; they are completely defined by ISO 7816. This section 
presents a brief overview of the various forms of APDUs we can use.  

Each APDU exchanged between the card and the terminal is composed of a command APDU and a response APDU, 
usually abbreviated as C-APDU and RAPDU, respectively.  The command APDU is the command sent to the card, and 
the response APDU returns to the terminal the execution result of the command. Command APDUs and response 
APDUs are exchanged alternately between a card and the IFD.  

It is important to stress that smart cards never initiate communications, they only respond to command APDUs sent 
to them by the IFD.  

APDUs and MULTOS  

MULTOS receives all commands sent by the terminal.  When MULTOS receives a command, it decides whether the 
command should be handled by MULTOS itself or whether the command should be passed to an application on the 
card.  

We’ll gloss over the details of how this decision is made, for now, and just introduce the notion of a currently 
selected application. This application receives all the commands MULTOS doesn’t process 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 19 

 

itself; it is the application’s responsibility to act on them and to return a response.  

A command APDU consists of a four-byte mandatory header followed by a variable- length conditional body.  The 
structure of the command APDU is:  

The fields within the command APDU are:  
• CLA — Class of instruction.  A mandatory single byte that indicates the structure and format for a category 
of command and response APDUs.  

• INS — Instruction code.  A mandatory single byte that specifies the instruction of the command.  

• P1 and P2 — Instruction parameters. Two mandatory single-byte parameters that provide qualifications to 
the instruction.  

• Lc — Length of command data.  An optional single byte indicating the number of bytes present in the data 
field of the command*.  

• Data field. An optional sequence of Lc bytes in the data field of the command.  

• Le — Length of expected response. An optional single byte indicating the maximum number of bytes 
expected in the data field of the response to the command*.  
 
A response APDU consists of a variable-length conditional body and a two-byte mandatory trailer as follows:  

 

 
 
 
The fields within the response APDU are:  

• Data field. An optional sequence of bytes received in the data field of the response.  

• SW1 and SW2 — Status words. Two mandatory single-byte values that denote the processing state in the 
card.  
 
*Note: SmartDeck also supports long form APDUs for T=1 and T=CL devices. 

 

Application selection  

 

An application on a MULTOS card is inactive until it is explicitly selected with the SELECT command. When MULTOS 
receives a SELECT command, it searches for the application whose AID matches the one specified in the command.  
If a match is found, MULTOS prepares the application to be selected and, if an application is already selected, 
MULTOS deselects it.  

 

Once an application is selected, MULTOS forwards all subsequent APDU commands (including further SELECT 
commands) to the application.  In the main method, the application interprets each incoming command APDU and 
performs whatever is requested by the command.  For each command APDU sent, the application responds by 
sending back a response APDU.  

 

This command-and-response dialogue continues until a new application is selected or the card is removed from the 
IFD. When deselected, an application becomes inactive until the next time it is selected.  

 
 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 20 

 

Programming Topics 
 

This section describes special features of SmartDeck and MULTOS that you’ll need to know about when you start 
writing applications.  

Attributes  

The C compiler and assembler support attributes that allow you to easily set up application parametrers.  These 
attributes are interpreted by the SmartDeck tools to provide extra features.  

Attribute syntax in C  

An attribute is specified using the syntax:  

  #pragma attribute("attribute name", "attribute value")  

The C compiler inserts the attribute into the object file, and the linker gathers the attributes of all linked modules 
and places them into the linked executable.  

The compiler and linker do not interpret the attributes or ascribe a meaning to them.  You can use attributes to 
insert copyright notices into object files, for example.  Attributes are not placed into the code of the application, 
they merely act as flexible additional information for processing by the SmartDeck tools.  

Setting attributes on the command line  

If you don’t want to place attributes in your source code, you can give them on the hcl command line as follows:  

hcl -Aattribute=value ...  

This instructs the linker to set the attribute to the given value.  An attribute given on the command line in this way 
overrides any attribute that you have set in a source file.  

As an example, you can insert a copyright notice into eloyalty.hzx when compiled from eloyalty.c using 
the following:  

hcl -Acopyright=MyCompany eloyalty.c  

If you wish to include spaces in the attribute, you must place quotation marks around the option like this:  
  hcl "-Acopyright=Copyright (c) 2006 MyCompany Inc" eloyalty.c  

Listing attributes  

You can list the attributes of an object file or an executable by using the -A switch of the object lister hls. For 
example, the following will list the attributes that are present in the linked executable eloyalty.hzx:  
  hls -A eloyalty.hzx  

 

Attributes interpreted by SmartDeck  

The SmartDeck ALU output routines and the SmartDeck loader interpret attributes to set application parameters 
when loading the application onto a card.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 21 

 

Setting the application ID (AID)  

#pragma attribute("aid", "hex-string") 

 
This sets the application ID for the application to hex-string, which must be a hex- encoded string.  For 
example, the following sets the AID of the application to F1 00 00 00 00:  
#pragma attribute("aid", "F1 00 00 00 00")  

 

If you prefer, you can omit the spaces and use:  

#pragma attribute("aid", "F100000000")  

or even:  

#pragma attribute("aid", "F1 0000 0000")  

 

When the application is loaded onto the card using hterm’s automatic certificate generation, its 
application ID is set automatically to this AID.  

Setting the file control information (FCI)  

You can set the file control information record using the same syntax:  

#pragma attribute("fci", "hex-string")  

The file control information is returned by MULTOS by the Get File Control Information primitive.  

Setting the file directory entry (DIR)  

And set the directory file entry using:  

#pragma attribute("dir", "hex-string")  

 

Alternatively, the attribute “name” can be specified and this will be automatically combined with the 
“aid” attribute to form the “dir” attribute value. This is easier than having to know how to format the DIR 
entry. 

#pragma attribute("name", "string")  

 

Setting the ATR type  (ATRTYPE)  

Set the ATR type to be either “primary”, “secondary” or a single byte hex-string. 

#pragma attribute("atrtype", "primary")  

#pragma attribute("atrtype", "hex-string")  

 

If the atrtype attribute is used, the atscontrol attribute, if also used, will be ignored. To set complex 
combinations of ATR and ATS application controls set the atrtype attribute to a single hex-string value as 
follows: 

• "43": Control both primary and secondary ATRs 

• "45": Control primary ATR and ATS 

• "46": Control secondary ATR and ATS 

• "47”: Control both primary and secondary ATRs and the ATS 

 

Specifying that the application controls the ATS 

This is interpreted when creating an Application Definition File with melcertgen 

#pragma attribute(“atscontrol”) 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 22 

 

Specifying a shell application  

You can specify that you application is to be a shell application using  

#pragma attribute("shell")  

 

Specifying a default application  

You can specify that you application is to be a default application using  

#pragma attribute("default")  

 

Setting the access_list  

The access list to be used when loading from the .hzx file or creating a default ALC. It must be a two byte 
value. 

#pragma attribute("access_list", "hex-string")  

 

 

Differences between MULTOS implementations  

Some features of MULTOS are designated optional which means that a MULTOS implementation may or 
may not support that particular feature. Testing your code on the card you are deploying onto, therefore, 
is vital because the SmartDeck MULTOS simulator supports all optional primitives.  

The features that a card supports are described in the MULTOS Implementation Report document which 
is available fon the MAOSCO web site. 
  
Session data and stack sizes  

The size of dynamic data varies between MULTOS implementations, so you should check that your 
application works on the card that you wish to deploy onto. To check the amount of session and dynamic 
data available on a card, consult the MULTOS Implementation Report.  

Optional support for MULTOS N and V flags  

The N and V flags of the MULTOS condition code register are designated as optional flags.  The SmartDeck 
compiler generates code that does not rely on the MULTOS card supporting signed arithmetic and as such 
does not use the N and V flags. All library routines are written so that they will execute correctly on cards 
which do not support signed arithmetic.  

You can safely deploy your code on any card whether it supports signed arithmetic or not, fully confident 
that it will work correctly.  

Optional MULTOS primitives  

Some MULTOS primitives are designated optional, such as certain crytographic primitives and transaction 
protection. It is impossible for the compiler to check that the primitives you use are available on the card 
you deploy onto.  If you use a primitive that is not supported by the card, your application will abend.  

Atomicity and data item protection  

You cannot rely on the code generator of the compiler to write atomically to a variable.   

As an example, consider the following program fragment:  
static long var; 

void inc_var(void) 

{  

var += 2; 

}  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 23 

 

The compiler uses two instructions to increment the variable:  
INCN SB[var], 4 

INCN SB[var], 4  

If you want to use atomic writes and data item protection you should always check the code generated by 
the compiler for your critical routines.  Rather than using data item protection, you should consider using 
transaction protection which is easier to use than data item protection in high-level languages such as C.  

The C compiler  

The SmartDeck C compiler is an implementation of ANSI standard C. When using the optimization 
features of the linker, SmartDeck C makes an ideal development system for smart card applications. 

MULTOS user flags 

The SmartDeck C compiler and runtime system do not use the four flags in the condition code register set 
aside for the application to use.  You may safely use these flags in assembler without having them 
changed by compiler code or the runtime system. 

 
Function Qualifiers 

The C compiler supports the following function qualifiers: 

• __codelet : The function is a codelet entry point. 

• __patchable: The function is a codelet entry point that may be patched. 

• __patched: The function is a patch implementation for a patchable codelet function. 

• __used: Ensures that if a function is not referenced, it (and everything it calls) will still be included 
in the linked application or codelet. 

• __noreturn: Prevents the compiler from adding return instructions in a function or codelet. For 
use where a function does not have a path that will return to the caller. 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 24 

 

Troubleshooting 
 

 

Simulator and smart card problems  

Application works on the simulator but fails on the card  

This is a common problem when developing smart card applications.  In fact, it happens when using any 
simulation environment, and isn’t just a problem with the SmartDecktools.  

 
There are lots of reasons why your application will run on the SmartDeck simulator but not on the card, 
and here we present a set of steps to follow to rule out some common problems. However, these may 
not always be enough to figure out why your card application doesn’t work — in which case, you can 
always ask our support department for further suggestions and help.  

 
• Check your resource use 

The simulator is rich in resources, with lots of room for code and data. In particular the dynamic and 

session data are large.  It could be that your application will not work on the card because you use too 

much session or dynamic data, in which case the application will abend. Trying to figure out if this is the 

case will be difficult.  However, what you can do is restrict the amount of dynamic data in the simulator 

by using the -ds switch to define the amount of dynamic data available to applications.  You can find the 

amount of dynamic data your card has from MAOSCO; then, plug the value into the simulator and see 

whether your program still works.  If it doesn’t, the debugger can tell you where you used too much 

dynamic data.  

 
• Check your card 

You’ve used MULTOS features which are available in the simulator but not on your card.  

 
Application works on the card but fails on the simulator  

This should never happen as we intend the simulator to be a faithful implementation of a MULTOS smart 
card. If this does happen then it is very likely to be a problem in our simulator, and you should report this 
to MAOSCO so they can investigate.  

 

Manual installation of the card component  

The COM component we use to control the MULTOS card is registered by the installation program. 
Should you need to install the component manually, you can do so using the standard Windows program 
regsvr32. The command is:  

regsvr32 /s htermlib.dll  

The program will display a dialog box which tells you that the component installed correctly and that the 
registry has been altered to make the component known to client software 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 25 

 

SmartDeck Components List 
 

SmartDeck comprises a number of separate programs that work together via proprietory files to enable 
you to develop and test MULTOS applications. There are three different file formats in SmartDeck:  

 
• Object files (.hzo) that contain compiled program code  
 
• Library files (.hza) that are collections of object files. Library files are stored in the popular Zip 
file format.  
 
• Executable files (.hzx) that is a fully linked executable program. 
The contents of object and executable files can be listed using the hls program. The contents of library 
files can be viewed using the archiver or a Zip file viewer. 
 
SmartDeck object files can be created:  
 
• from assembly language source code using the has program.  
 

• from C source code using the hcc program.   
 

• Library files are created using the har program. 

 
• Object files and library files are linked together using the hld program to create an executable 
file.  
 

Executable files can be loaded and debugged on the MULTOS debugger/simulator programs mdb and 

hsim. 

 

Executable files can also be loaded onto MULTOS cards using the hterm program.  

 
MULTOS application load units can be generated from executable files using the halugen program.  

 

The use of the C compiler, assembler, linker, and even the archiver is coordinated by the compiler driver, 

hcl.exe so you won’t need to use these programs directly.  

 
Each of these programs is described by a chapter in this manual.  The following table lists these programs, 
with references to their primary documentation sections.  

 

NOTE: Most of the time you will execute these applications from within the Eclipse IDE. In fact, the 
standard MULTOS debug toolchain takes care of compiling, linking and debugging your applications. The 
following chapters should be refered to when you wish to change the default settings or add further 
processing steps. 

 

 

 

 

 

 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 26 

 

Program Description 

 

hcl.exe 

 

Compiler driver: provides a useful way to get files compiled, assembled and linked  

 

hcc.exe C compiler: compiles modules written in C 

 

mdb.exe Eclipse gdb/mi debugger: Provides the debugging interface between Eclipse and the 
MULTOS simulator. 

 

has.exe MULTOS Assembler: assembles modules written in assembly language 

 

hld.exe Linker: Required for linking compiled and assembled files, along with run-time 
startup code and support libraries, into formats suitable for downloading or 
debugging 

 

hsim.exe MULTOS Simulator: used in conjunction with mdb but can also be used stand-alone. 

 

hterm.exe Loader: Used to load and delete application from MULTOS cards  

 

har.exe Archiver: Consolidates multiple object files into a single, object code library 

 

hls.exe Object file lister: displays useful information held in unlinked files and linked 
executables.  

 

hkeygen.exe RSA key pair generator: creates a private and public RSA key pair, suitable for use 
with MULTOS cryptography primitives  

 

halugen.exe ALU generator: creates a standard MULTOS application load unit.  

 

melcertgen.exe ALC/ADC generator: creates load and delete certificates for developer cards. 

 

meldump.exe MULTOS file list: outputs contents of standard MULTOS files.  

 

hex.exe Extractor utility: used to prepare images in various formats  

 

 

Table 6 Components of MULTOS SmartDeck 

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 27 

 

Compiler Driver Reference 
 
This section describes the switches accepted by the SmartDeck compiler driver, hcl. The compiler driver 
is capable of controlling compilation by all supported language compilers and the final link by the 
SmartDeck linker.  It can also construct libraries automatically.  

 

In contrast to many compilation and assembly language development systems, with SmartDeck you don’t 
invoke the assembler or compiler directly.  Instead you’ll normally use the compiler driver hcl as it 
provides an easy way to get files compiled, assembled, and linked.  This section will introduce you to using 
the compiler driver to convert your source files to object files, executables, or other formats.  

 
We recommend that you use the compiler driver rather than use the assembler or compiler directly 
because there the driver can assemble multiple files using one command line and can invoke the linker 
for you too.  There is no reason why you should not invoke the assembler or compiler directly yourself, 
but you’ll find that typing in all the required options is quite tedious—and why do that when hcl will 
provide them for you automatically?  

 

File naming conventions  

The compiler driver uses file extensions to distinguish the language the source file is written in.  The 
compiler driver recognises the extension .c as C source files, .s and .asm as assembly code files, and 
.hzo as object code files.  

We strongly recommend that you adopt these extensions for your source files and object files because 
you’ll find that using the SmartDeck tools is much easier if you do—as you’ll see later.  

C language files  

When the compiler driver finds a file with a .c extension, it runs the C compiler to convert it to object 
code.  

Assembly language files  

When the compiler driver finds a file with a .s or .asm extension, it runs the assembler to convert it to 
object code.  

Object code files  

When the compiler driver finds a file with a .hzo extension, it passes it to the linker to include it in the 
final application. 

Translating files  

Translating a single file  

The first thing that you’ll probably want to do is assemble a single source file to get an object file.   

Suppose that you need to assemble the file test.asm to an object file— you can do this using hcl as we 
suggested before, and all you type is:  

   hcl -c test.asm  
 
The compiler driver invokes the assembler with all the necessary options to make it produce the object 
file test.hzo. The option -c tells hcl to assemble test.s to an object file, but to 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 28 

 

stop there and do nothing else.  

 

To see what actually happens behind the scenes, you can ask hcl to show you the command lines 
that it executes by adding the -v option: hcl -v -c test.asm  

On my computer, the commands echoed to the screen are:  
F:\SmartDeck\Examples>hcl -v -c test.asmF:\SmartDeck\bin\has -JF:\SmartDeck\include -

I. test.s -o test.hzo  

Now you can see why using the compiler driver is so much easier! It doesn’t matter about the order of the 

-v and -c switches, nor does it matter where you place them on the command line.  

Assembling multiple files  

Where the compiler driver really shines is that it can assemble more than one file with a single command 
line.  Extending the example above, suppose you wish to assemble the three files test.asm, apdu.asm, 
and mem.asm to three object files; this is no problem:  

hcl -c test.asm apdu.asm mem.asm  

 
The compiler driver invokes the assembler three times to process the three source files. This sleight of 
hand is revealed using -v: 
 
F:\SmartDeck\Examples>hcl -v -c test.asm apdu.asm handler.asm 

F:\SmartDeck\bin\has -JF:\SmartDeck\include -I. test.asm -o test.hzo 

F:\SmartDeck\bin\has -JF:\SmartDeck\include -I. apdu.asm -oapdu.hzo 

F:\SmartDeck\bin\has -JF:\SmartDeck\include -I. mem.asm -o mem.hzo  

 

Command syntax  

You invoke the compiler driver using the following syntax:  

hcl [ option | file ]...  

Files  

file is a source file to compile.  The compiler driver uses the extension of the file to invoke the appropriate 
compiler.  The compile driver supports the following file types:  

Extension Compiler invoked 

 

.c 

 

C compiler, hcc.  

.s .asm Assembler, has. 

.hzo None, object file is sent to linker, hld 

 
Table 7 Languages and file extensions 

 

 

 

 

 

 

Options  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 29 

 

option is a command-line option.  Options are case sensitive and cannot be abbreviated. The compiler 

supports the following command line options:  

Option Description 

 

-Aname[=val] 

 

Define the attribute name and optionally set it to val. 

-ansi Warn about potential ANSI problems 

-ar Create an archive library as output, do not link 

-c Compile to object code, do not link 

-Dname Define the pre-processor symbol name and optionally initialise it to val 

-Dname=val  

-Ename Set program entry symbol to name 

-ext file.hzx Use the supplied flat application .hzx file when linking codelets and stub applications. 

-Ffmt Set linker output format to fmt 

-g Generate symbolic debugging information 

-help Show tool help page 

-I- Don’t search standard directories for include files 

-Idir Add dir to the end of the user include search list 

-Jdir Add dir to the end of the system include search list 

-Ldir Set the library search directory to dir 

-lx Search library x to resolve symbols 

-M Display linkage map on standard output 

-map file Request linker to generate a detailed linkage map in file 

-n Dry run—do not run compilers, assembler, or linker 

-O Optimise output 

-opt n Use optimised instruction group ‘n’. See [MDRM] for details. 

-nocen Do not issue Compact Enable instruction. See [MDRM] for details. 

-o file Leave output in file 

-pt file File containing the linker patch table for patchable codelet functions 

-pure Check that the application has no static data 

-r Do a partial link. 

-s- Do not link the standard startup file crt0.hzo. 

-sname Use startup file name.hzo 

-Tname=l-addr[/raddr] Set section name to load at l-addr and run at r-addr 

-Uname Undefine pre-processor symbol name 

-v Show commands as they are executed 

-V Display tool versions on execution 

-w Suppress warnings 

-W[abcfjtl]arg Pass arg to specified tool 
a – assembler 
b – basic compiler 
c – C compiler 
f – FORTH compiler 

l – linker 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 30 

 

-X[abcfjtl]x Use x as translator for given language – the letters 
have the same meanings as the –W option 

 

Table 8 Compiler driver command line options  

 

Verbose execution  

The SmartDeck compiler driver and compilers usually operate without displaying any information 
messages or banners—only diagnostics such as errors and warnings are displayed.  

If the -V switch is given, the compiler driver displays its version and it passes the switch on to each 
compiler and the linker so that they display their respective versions.  

The -v switch displays command lines executed by the compiler driver.  

 

Finding include files  

In order to find include files the compiler driver arranges for the compilers to search a number of 
standard directories.  You can add directories to the search path using the -I switch which is passed on to 
each of the language processors.  

 

Macro definitions  

Macros can be defined using the -D switch and undefined using the -U switch. The macro definitions are 

passed on to the respective language compiler which is responsible for interpreting the definitions and 

providing them to the programmer within the language. The -D switch takes the form:  

-Dname  

or  

-Dname=value  

The first defines the macro name but without an associated replacement value, and the second defines 

the same macro with the replacement value name. The -U switch is similar to -D but only supports the 

format  
-Uname  

C compiler  

When passed to the C compiler, the macros are interpreted by the compiler’s pre- processor according to 
the ANSI standard.  The pre-processor interprets a macro defined using -Dname as equivalent to the 
declaration:  

#define name  

A macro defined using -Dname=value is equivalent to: #define name value  
A macro undefined using -Uname is equivalent to #undef name  

 

Linking in libraries  

You can link in libraries using the -lx option. You need to specify the directory where libraries are to 
be found, and you can do this with the -L option.  

• Example  

Link the library libcrypto.hza and libio.hza found in \SmartDeck\lib: 

hcl -L\SmartDeck\lib -lcrypto -lio  

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 31 

 

Building archives  

The compiler driver can be used to simplify building archive libraries. For example three source source 
files can be compiled and a library made with the following command  

hcl -ar -o mylib.hza file1.c file2.c file3.c  

 

Creating ALU’s  

Unprotected ALU’s can be simply created using the -Falu option. To create protected and 
confidential ALU’s use the halugen program 

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 32 

 

 
The Simulator 

 

You can use the MULTOS simulator to test applications during development rather than trying to debug 
applications on a real smart card.  The simulator is a faithful implementation of the MULTOS virtual 
machine, including:  

 
• interpretation of all MEL instructions  

• implementation of MULTOS memory and application structures  

• support for most MULTOS primitives  

• full-strength cryptography and delegation  

• MULTOS and application APDU commands  

• a printf extension primitive to help debug in difficult situations  

• simulated command interface enabling host program to send commands to the simulator  
• process events 
 
Note the following MULTOS features are not supported: 
 

• Maintain Selection permission (access_list) 

• Retain Session Data permission (access_list) 

• Confidential ALU loading  
 
The simulator supports the most common forms of the Select File APDU command required for testing 
and debugging of applications. 
 
The simulator can be run either in standalone mode or under control of the Eclipse IDE. 
 

Command syntax   

hsim [ options ]... file1 file2 .. filen  

 

Files  

file1, file2 ..  filen are the applications (executables produced by the linker) that are loaded into the 
simulator.  

Options  

options are command-line options.  Options are case sensitive and cannot be abbreviated.  

 

Option Description 

 

-apdu “command” 

 

Stack an APDU command. A command is a sequence of twodigit, 
space-separated, hexadecimal numbers. This option can be 

used several times to define a sequence of APDU commands. 

-addStatic blocks Number of additional 255 byte blocks of static memory to make immediately available above 
that  allocated in the application source code. See [MDG] for details of “Additional Static” 
memory. 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 33 

 

-cardtype type Specify the cardtype one of HitachiV3, HitachiV4, 
KeycorpInfineonV4, KeycorpInfineonV4P, MI-M3, MI-M4, MI-M5, ersa192, ersa256, aes16, 
aes24, aes32. This option is used to select development card specific cryptography keys (such 
as that used in Ahash). 

 

-ds size Define the size of the dynamic region using a C-style number 
(default is based on the cardtype). 
 

-ifd name When this option is used APDU’s can be supplied to the simulator 
from the SmartDeck Terminal COM automation component or hterm. 
 

-init sym=val Redefine the initialisation of a global static variable. 
 The value is a string of hexadecimal numbers. If 
the symbol is a pointer then the locations pointed at are updated. 
 

-noclearpublic When this option is used the public memory area will not be 
zeroed between APDUs. The default behaviour is to zero the 
public memory area between APDUs. 

  

-ps size Define the size of the public region using a C-style number 
(default is based on the cardtype).. 
 

-select name Select named application to run. 
 

-selectaid aid Select the application to run by its hex application identifier value. 

-t=0 Interpret APDU’s in T=0 protocol. This means that the 
debugger/simulator treat case 3 and case 4 commands the same 
(an Le byte isn’t needed for case 4). For a case 4 command the 
debugger/simulator sends a GetResponse status. 

  

Table 9 – Simulator option summary 

 
The following options may be useful for standalone use of the simulator: 

Option Description 

 

-count 

 

Display the instruction count on exit. 

 

-e Exit on error (default is to report error and continue from the next 

instruction). 

 

-p On exit files are written with instruction count information. The 
output files have the same names as the .hzx input files with the 
suffix “_p” added. 

 

-pn On exit files are written with instruction count information. The 
output files have the same names as the .hzx input files. 
 

-t Trace instructions. 

-log Log APDUs sent. 

 

Table 10 Simulator additional options 

 

 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 34 

 

Example  
hsim app1.hzx app2.hzx app3.hzx -select app2 -apdu 7010000000  

This example loads three applications, selects one of the applications  and sends it the command “70 
10 00 00 00”.  

 
Example  

hsim eloyalty.hzx -ifd sim  

This example starts a standalone simulator that can communicate with the SmartDeck Terminal COM 
automation component for example  

 
hterm -sim sim -select eloyalty -apdu "70 30 00 00 02"  

Example  
  hsim eloyalty.hzx -select eloyalty -apdu "70 30 00 00 02" -p  

 

This example loads an application, selects it, sends an apdu to it and then exits. On exit the file 
eloyalty.hzx_p is written which contains both the application and instruction count information 
on the program run. The command line  

hsim eloyalty.hzx_p -select eloyalty -apdu "70 30 00 00 02" -pn  

will load the application (now containing the instruction counts from the last run), select it, send an APDU 
to it and then rewrite the file eloyalty.hzx_pwith the accumulated instruction counts of both program 
runs.  

Process Events 

The simulator implements MULTOS Process Events for applications that have the correct permission bit 
set in their access_list. See section 4.8 of the MULTOS Developer’s Guide [MDG]. The Update Process 
Events primitive is also supported (see [MDRM]). 

The following conserations apply to some of the events. 

 

Create Event 

The Create event is NOT triggered when applications are loaded directly from .hzx files passed on the 
hsim command line (including when debugging in Eclipse). To trigger the event, the following APDU may 
be sent:- 

 
 BE 16 00 00 01 00 

The last byte is the index (zero based) of the loaded application to execute. 

 

Otherwise the Create event is triggered on successful receipt of a complete Application Load Certificate at 
the end of the application loading sequence. The easiest way to do this is to run the simulator with the -
ifd option and load the application from hterm. 

Example 
hsim -ifd sim -cardtype MI-M4 -log 

hterm -sim sim -alu myapp.alu -alc myapp.alc 

 
Select / Reselect / Deselect Events 

These events are NOT triggered by the -selectaid and -select options of the simulator. Select File 
APDUs must be used. 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 35 

 

 
Delete Event 

This is triggered by the sending of a complete Application Delete Certificate. Again, the easiest 
way to do this is via hterm. See Load Event above. 
 

Simulation status  

The simulation can be either running (executing instructions) or stopped. The simulation is stopped by  

• hitting a breakpoint (which may be conditional) 

• triggering a watchpoint (only one watch point can be set at a time) 

• completing a single step  

• pressing the stop button  

• the application executing an instruction that causes a MULTOS abend  

• returning control to MULTOS by executing an EXIT instruction  
 

When the simulation is stopped, you can examine its state using the debugger.  
When the simulation is restarted after it has executed a MULTOS exit instruction, it starts executing at the 
first instruction of the selected application. Session and static data values are preserved, allowing you to 
test the behaviour of your application using a series of APDUs be tested.  

 
The simluator will not run until an application has been selected. This can be done on the command line 
with the -select option. If an application is built with the shell or default attribute then it is 
automatically selected.  

 
The simulator will not run until it has received an APDU to process. APDU’s can be provided on the 
command line (-apdu option, can be used multiple times), typed into the Eclipse console window or can 
be supplied programmatically using the -ifd option together with a suitable host program.  

 
Static memory can be preserved between runs of hsim. To enable this, create an empty .mem file in the 
current working directory (the project directory when executed via Eclipse). The name of the file should 
be the application ID. e.g. f3000001.mem . The file will be updated every time that static memory is 
written to. Subsequent runs of hsim will load the state from the file as it was left after the previous run.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 36 

 

Working with Cards 
 
To assist you when testing your application on a MULTOS card or debugging your application on the 
SmartDeck simulator, we’ve provided the “SmartDeck Terminal COM automation component.”  We refer 
to it here simply as the SDT component.  

 

Using this component, you can:  

• Load an application onto a card.  

• Delete an application from a card.  

• List all applications present on a card.  

• Select applications and send APDUs to them.  

• Retrieve MULTOS and manufacturer data for a card. 
 
The SDT component supports  interaction either with a PC/SC smart card reader or with the SmartDeck 
Simulator/Debugger. This enables you to run identical test cases on both.  
Because this is a COM component, you can use it in your own PC programs or scripts; we show how to do 
this in ” Using the SDT component”. For now, we’ll concentrate on using the hterm utility, which makes it 
easy to manage applications on your development cards and provides a simple facility to send APDU 
commands.  

 

 Managing card applications using hterm  

The program hterm provides basic access to the facilities of the SDT component.  More-advanced 
use of the SDT component can be achieved programmatically, for example by using a suitable 
scripting language.   

Before we load applications onto the card, it’s worth checking that the card, card reader, and software 
work together properly.  First check that PC/SC is up and running by typing  

hterm -readers  

This should return a list of PC/SC reader names for smart card readers that you have installed on your 
computer. If you have just one reader then hterm will always connect to this as the default reader (the 
subsequent documentation examples assume this).  If you have more than one PC/SC reader then you’ll need 
to specify which reader to use by using the -pcsc option.  

Now insert a MULTOS card into the card reader and type:  
hterm -atr  

For a new MULTOS developer card, you should see something like this:  
ATR 0x3b 0x6f 0x00 0x00 0x80 0x31 0xe0 0x6b 0x84 0x03 0x03 0x04 0x05 0x55 0x55 0x55 

0x55 0x55 0x55  

This displays the Answer To Reset (ATR) from the card.  The exact values of the bytes may differ, but the 
command should execute without problems.  If you have problems, please check that your reader is 
working using the vendor-supplied testing programs.  

Now for something more adventurous.  Type:  
hterm -card  

This should (depending on the type of MULTOS card you have) return one of HitachiV3, HitachiV4, 
KeycorpInfineonV4 or KeycorpInfineonV4P.   

 If you can get this far, your card reader and software is working well.  Now we can use hterm to load 
applications onto a card and do some simple testing.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 37 

 

The eloyalty application that is supplied with the toolset can be loaded as follows  
hterm -load eloyalty.hzx  

You can verify that it has been loaded by examining the MULTOS directory with the command   
hterm -dir  

Which will detail the application label and the application identifier that the SDT component has allocated 

to it. You can now select the application, and send two APDU commands:  
hterm -select eloyalty -apdu "70 30 00 00 02" -apdu "70 10 00 00 0200 10"  

This will show the apdu commands and their reponses on the console. You can now delete the 

application from the card, this can done either by  
hterm -delete eloyalty  

or all applications can be deleted using  
hterm -clean  

 

Loading and deleting applications  

The SDT component loads fully linked SmartDeck applications directly onto  
the card without the need to generate an Application Load Unit (ALU).  The files we load onto cards are 
regular SmartDeck executables and have the extension .hzx. These contain the code and static data of 
the application, together with the application’s session data requirements and other details such as the 
application identifier.  

What’s in a certificate?  

Because MULTOS emphasises security it requires load certificates for loading applications onto the 
card and delete certificates for deleting them from the card must be supplied.  

The SDT component supports two ways of supplying MULTOS load and delete certificates:  

• auto-generated certificates  

• user-supplied certificates The SDT component can auto generate  certificates during the load and 
delete operation for MULTOS development cards. The certificates that are generated match the 
application footprint precisely, but generate default values for the application- provider public key. If a 
specific application-provider public key is required or you have special requirements for the application 
footprint, then you’ll need to get some certificates generated by an issuing authority. User-supplied 
certificates are held in files with the extension .alc for load  
certificates and .adc for delete certificates. The suitability of a certificate is checked against the 
application footprint prior to its use for program load.  

 
Application characteristics  

The main characteristics of an application (the code size, data size and session data size) can be deduced 
from the application itself.  Other characteristics are supported using object file attributes. The attributes 
that are supported by the SDT component define:  

• application identifier entry— the value of the attribute aid is interpreted as a string of 
hexadecimal numbers (which can be space seperated) for example #pragma attribute("aid", "f0 
00 10 00") would result in the application having the application identifier f0001000.  
• file control information entry —  the value of the attribute fci is interpreted as a string of 
hexadecimal numbers.  
• the directory file entry — the value of the attribute dir is interpreted as a string of hexadecimal 
numbers.  
• whether the application is a shell application — the attribute shell defines if the application is a 
shell application.  
• whether the application is a default application — the attribute default 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 38 

 

defines if the application is a default application.  
• which of the ATR historical characters the application accesses — the attribute atrtype value 
can take the value "primary" or "secondary", the default value is no access.  
 
The MULTOS directory file  

When the SDT component loads an application, the MULTOS directory file is updated with an entry that 
records the AID and the corresponding application name. This enables the component and the user to identify 
the applications loaded on a card, and provides a friendly way of referring to applications (e.g., eloyalty 
rather than F0000104).  

If an attribute has been used to specify a user supplied entry in the directory file then the SDT component 
will put this in rather than construct a directory entry. If this has been done then the application cannot 
be referenced by name instead the application identifier must be used for example  

hterm -selectaid "f0 00 01 04" -apdu "70 30 00 00 02" 

hterm -deleteaid “f0 00 01 04”  

A directory entry that hasn’t been put in by the SDT component will be displayed as a string of 
hexadecimal numbers.  

Shell applications  

When loading and deleting applications the SDT component accesses the MULTOS and manufacturer data 
of the card to determine the card type and accesses the MULTOS directory file. If you are developing a 
Shell application then you can either support the MULTOS commands   

• select MF/DIR file  

• read record,  

• Get Manufacturer Data  

• Get MULTOS Data in your Shell application (an example is provided in the distribution) or you will  
 
have to use the SDT component in such a way so that it never needs to use the MULTOS commands.   

The cardtype can be specified to the hterm program which will remove the use of GetManufacturerData 
and GetMULTOSData.  

hterm -load shell.hzx -cardtype HitachiV4 

hterm -deleteaid "f0 00 01 04" -cardtype HitachiV4  

The use of the application identifer in the deletion avoids referencing the directory file.  

Initialisation at load time  

To assist development of applications that are to be personalised the SDT component provides a facility 
to redefine the initial values of  global variables when the application is loaded. This facility uses the 
symbolic names of the variable to allow for the changes that occur during program development.  

If the following variable is declared in an application  
int points;  

It’s value can be set at load time as follows  
hterm app.hzx -init points=0064  

Which will initialise the variable points to be 100. Note that the application must be built with 
debugging (-g) enabled to be able to use this facility.  

ALU loading  

To load or delete an application load unit a suitable load/delete certificate must be supplied.  
hterm -alu app.alu -alc confkeyv4.alch 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 39 

 

term –adc confkeyv4.adc  

The SDT component will check that the application footprint fits into the load certificate, but it won’t 
check that the certficate is suitable for the card.  

 

Command-line options  

hterm is a client of the SmartDeck Terminal COM automation component. It can be used for application 
management and simple interactive testing. You can invoke hterm by using the following syntax:  

hterm [ options ]  

options is a command-line option.  Options are case sensitive and cannot be abbreviated.  Options can be 
put into indirect files and referenced on the command line using @indirectfile syntax.  

Switch Description 

 

-readers 

 

List names of PC/SC readers. 

 

-adc certificate Delete using given application delete certificate. 
 

-alc certificate Load using the given application load certificate. 
 

-alcDataSize When opening the application, allocate the amount of data specified in the ALC rather than 
in the .alu or .hzx file. 
 

-alu  The file named in the -load switch is an ALU 
 

-apdu command Send APDU command. 
 

-atr  Display ATR. 
 

-card Display type of card. 
 

-cardtype type Specify type of card; one of HitachiV3, HitachV4, KeycorpInfineonV4, KeycorpInfineonV4P 
MI-M3, MI-M4, MI-M5, MI-S4, ersa192, ersa256, aes16, aes24, aes32. 
 

-clean Delete all applications. 
 

-delete name Delete named application. 
 

-deleteaid aid Delete application identifier by certification generation. 
 

-dir Display MULTOS directory 
 

-init sym=val Redefine the initialisation of a global static variable. The value is a string of hexadecimal 
numbers. If the symbol is a pointer then the locations pointed at are updated. 
 

-interact Starts a command prompt. Allows multiple APDUs to be entered. A blank line exits the 
command prompt and the tool. 
 

-ip ipaddress Connect to the MULTOS device using a supported mobile phone contactless reader app 
available at the supplied ip address. 
 

-load file Load file onto the card (a .hzx file unless -alu is specified). 
 

-logfile name Log all APDU commands to named file. The filename stdout can be used to direct output to 
the console. 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 40 

 

-manufacturer Display manufacturer data 
 

-mid mcdidlist.mid Extract the MCD-ID of the card and append it to the named MCD-ID list file. This file is used 
for requesting enablement data. 
 

-msm msmdata.msm Enable the card using the data returned from the KMA in the msmdata.msm file. 
 

-multos Display MULTOS data 
 

-name appname Give a name to the loaded application (default is to use the 
basename of the load file). 
 

-pcsc readerName Connect to named PC/SC reader (if omitted will connect to an 
arbitrary reader). 
 

-pcsc readerNum Connect to a numbered PC/SC reader (zero based index). 
 

-pcscdllname 

name 
Specify the name of the .dll through which hterm will access 

PCSC. 

 

-reload file Reload file onto the card, requires that the application name is 
the basename part of the filename. 
 

-reset Force a cold reset after connection to the device. 
 

-select name Select named application . 
 

-selectaid aid Select application by application identifier . 
 

-serial COM#:bps Connect to MULTOS device using serial port. e.g. COM4:19200 (serial interface) or COM5:i2c 
(using http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm module) 
 

-sim name Connect to simulator/debugger with the name given to the - 

ifd option of the simulator/debugger 

 
-V Display version 

 
-verbose Show information messages 

 

Table 11  Card Tool options 

 

hterm executes the options in the following order:  

 
1. turn on logging/verbose  
2. connect to PC/SC reader or simulator  
3. display options (atr, manufacturer, multos dir)  
4. initialise global variables  
5. set the card type, if specified  
6. clean or delete application  
7. delete the application if reload has been requested  
8. load the application  
9. select application  
10. send APDU commands  
11. disconnect from the PC/SC reader or simulator  
 

 

Using the SDT component  

This section demonstrates and describes more-advanced use of the SDT  

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm


 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 41 

 

component. hterm is a useful program to get applications loaded onto cards, but it can’t be used to load 
and test an application automatically—for example, regression testing an application after a change.  In 
such cases, you’ll need to script your tests, and the SDT component will make life a lot easier for you.  

Background information  

A COM automation server is a dynamically linked component that can be called from a COM client (such 
as hterm) or from a scripting language such as JScript.  

This section defines the syntax of the methods of the SDT component.  Unless we say otherwise, all 
examples are given in JScript (Microsoft’s version of JavaScript) or ECMAScript.  

Component creation  

The programmatic identifier (ProgId) of the SDT component is “SmartDeck.Terminal”. Before you can 
interact with the card, you must create a new instance of this component.  

JScript example  
term = new ActiveXObject("SmartDeck.Terminal")  

VBScript example  
Dim term Set term = CreateObject("SmartDeck.Terminal")  

Connecting to a smart card reader  

You can connect the SDT component to a PC/SC card reader by using the connectpcsc method, giving 
the name of the reader as a parameter.  In this case, we’re connecting to a Gemplus GPR400, or 
GemPC400.  

Example  
term.connectpcsc("Gemplus GPR400 0");  

It’s important to get the name of the reader right: spaces and case are important. If the name you give 
doesn’t match a known reader, the component returns an error.  

Connecting to the SmartDeck simulator  

You can connect to a SmartDeck simulator or debugger using the connectsim method, passing the 
name of a communication object as a parameter.  

Example  
term.connectsim("simulator");  

The name must match the name given to the simulator with the -ifd option. 
hsim -ifd simulator  

 
Resetting a card  

You can reset a card using the reset method. This method takes an integer parameter that specifies 
whether the card should be powered down (cold reset).  

Example  
term.reset(0); // warm resetterm.reset(1); // cold reset  

Disconnecting a reader  

The disconnect method will disconnect from the card reader or terminate the simulator/debugger.  

Example  
term.disconnect();  

Redefining values of global static variables  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 42 

 

To enable development of applications that are to be personalised the methods setdata, 
setdatalen and setdatabyte can be used. The setdata method takes the name of a global static 
variable and a string of hexadecimal numbers. When the application is loaded the data memory 
corresponding to the variable is overwritten with the supplied initialisation data. For example a C 
program could contain the following global variable  

unsigned char pin[4];  

by default this variable will be zero’d by the toolset. If the following is used  
term.setdata("pin", "aa bb cc dd");  

then it’s initial value will be equivalent to the C program  
unsigned char pin[4] = { 0xaa, 0xbb, 0xcc, 0xdd };  

The SDT component doesn’t do any type or size checking when it does the initialisation, so if your 
initialisation strings are too big they will initialise things they ought not to. The methods setdatalen 
and setdatabyte provide the same functionality as setdata but can handle binary data.  

term.setdatalen("pin",4);term.setdatabyte("pin",0,0xaa);term.setdatabyte("pin",1,0xbb

);term.setdatabyte("pin",2,0xcc);term.setdatabyte("pin",3,0xdd);  

Note that the application must be compiled with debugging (-g) enabled to be able to use this facility.  

Loading & deleting applications by certificate generation  

The method loadbycertgen will load a .hzx file by generating an application load certificate based on 
the application footprint and the type of card that is in the card reader.  

term.loadbycertgen("app","d:\app.hzx");  

…will load the file d:\app.hzx  and create a suitable entry in the directory file.  

The method deletebycertgen will delete the named application by generating a delete certificate 
which matches the application identifier of the application and detecting the type of card that is in the 
card reader.  

term.deletebycertgen("app");  

You can specify the card type if for example you have a shell application that doesn’t support the get 
MULTOS command.  

term.setcardtype("HitachV4");  

The method deleteaidbycertgen will delete an application by generating an application delete 
certificate based on the supplied application identifier.  

term.deleteaidbycertgen("f000ff01");  

...will delete the application by constructing an application delete certificate  

for the application identifier f000ff01. This method of deletion should be used when the MULTOS 

directory file cannot be accessed or the application has it’s own entry in the MULTOS directory file.  

The method cleanbycertgen will delete all loaded applications by examining the MULTOS directory file 
and deleting each entry by generating a suitable delete certificate.  

term.cleanbycertpath();  

Loading & deleting applications by fixed certificate  

The method loadbycert will load a .hzx file with a given application load certificate. This method 
will check that the application footprint fits the application load certificate.  

term.loadbycert("app","d:\app.hzx","d:\app.alc");  

…will load the file d:\app.hzx using the certificate d:\app.alc and create an entry in the directory file 
of the application identifier contained in the application load certificate and the name app. The method 
deletebycert will delete using an application delete certificate.  

term.deletebycert("d:\app.adc");  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 43 

 

The method loadALU can be used to load a MULTOS application load unit with a given application 
certificate  

term.loadALU("d:\app.alu",”d:\app.alc”);  

Application selection and sending APDU commands  

The method selectbyname takes the name of an application, finds the corresponding application 
identifier (by consulting the MULTOS directory file), and selects that application.  

term.selectbyname("app");  

Alternatively the method selectbyaid  selects the application using its application identifier.  
term.selectbyaid("f000ff01");  

The file control information returned by the select can be examined using the  

getresponse* methods (see below). The method setcommand takes a string containing two-byte, 

optionally space- delimited hex numbers and puts it into the APDU command buffer of the component. 
  term.setcommand("70 30 00 00 02");  

 
The method exchange sends the contents of the APDU command buffer to the card or simulator.  

term.exchange();  

The method getresponse returns the last APDU command response as a two-byte, space-delimited 
string of hexadecimal numbers.  

var response = term.getresponse();  

Rather than working in strings, APDU commands can be manipulated as binary data with the 
setcommandlen and setcommandbyte methods. setcommandlen defines the number of bytes of 
the command; setcommandbyte sets a particular byte value in the APDU command buffer.  

var cmd = new Array(0x70, 0x30, 0x00, 0x00, 0x02); 

term.setcommandlen(cmd.length); 

for (var i = 0; i < cmd.length; i++) 

{ term.setcommandbyte(i, cmd[i]);}  

Similarly, getresponselen and getresponsebyte can be used to extract the APDU command 
response as binary data.  

var out = ""; 

for (var i = 0; i < term.getresponselen(); i++) 

out += term.getresponsebyte(i).toString(16) + " ";  

Examining the state of the card  

The ATR, MULTOS data, manufacturer data, and directory file can be seen via the methods getatr, 
getmultosdata, getmanufacturerdata, and getdirectory.  

The getatrlen and getatrbyte methods can be used to return the ATR string of the card as binary 
data.  

var out = "ATR "; 

for (var i = 0; i < term.getatrlen(); i++) 

out += term.getatrbyte(i).toString(16) + " "; 

WScript.echo(out);  

The getmultosdata and getmanufacturer methods return strings containing the fields of the 
MULTOS and manufacturer data of the card, respectively.  

WScript.echo("multosdata:"); 

WScript.echo(term.getmultosdata()); 

WScript.echo("manufacturer data:"); 

WScript.echo(term.getmanufacturerdata());  

The getdirectory method returns a string containing the contents of the MULTOS 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 44 

 

directory file. This string consists of a line for each entry, in the form:  
application name : application id  

Unless a user defined directory entry has been placed in which case this entry  

is output as a string of hexadecimal numbers. If no applications are loaded, the string “no 

applications loaded” will be returned.  
WScript.echo("directory:"); 

WScript.echo(term.getdirectory());  

Grab-bag methods  

The method logcommands takes a filename as a parameter and causes all interactions between the 
component and the card/simulator to be recorded to the named file.  

term.logcommands("test1.txt");  

The verbose method takes an integer parameter (1 = on, 0 = off) that controls the display of 
informational messages as methods are executed.  

term.verbose(1);  

The listpcscreaders method returns a string containing a newline seperated list of PC/SC 
reader names.  

WScript.echo(term.listpcscreaders());  

 

Complete examples of the SDT component  

The following script (in the file ex1.js) will connect to a PC/SC card reader, clean the card of any 
previously loaded applications, load an application, and send an APDU command.  

term = new ActiveXObject("SmartDeck.Terminal" 

term.connectpcsc("SmartCard Reader RSCR RS-232 1"); 

term.cleanbycertgen(); 

term.loadbycertgen("eloyalty", "eloyalty.hzx"); 

term.selectbyname("eloyalty");term.logcommands("ex1.log"); 

term.setcommand("70 30 00 00 02"); 

term.exchange(); 

term.disconnect();  

You can run this script using the Microsoft Windows Script Host as follows  
C:\SmartDeck\Scripts>cscript ex1.js  

and will produce a file called ex1.log with the command and its response.  
 

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 45 

 

The Assembler 
 

The assember has is responsible for translating SmartDeck assembly code files into object files.  

Command syntax  

You invoke the assembler using the following syntax:  

has [ option ] file  

Files  

file is an ASCII source file containing an assembly code modules whose syntax is described in the 
Assembler User Guide.  

Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated. The assembler 
supports the following command line options:  

Option Description 

 

-Dname[=val] 

 

Define the symbol name and optionally set it to val. 

-Dname Define the symbol name and set its value to be -1. 

-g Produce debugging information 

-Idir Add the library search directory to dir 

-Jdir Add the library search directory to dir 

-o file Leave output in file 

-Uname Undefined name 

-w Suppress warnings 

-V Display version 

 

Table 12 Assembler options 

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 46 

 

The C Compiler 
 

The C compiler hcc is responsible for translating SmartDeck C code files into object files.  

Command syntax  

You invoke the C compiler using the following syntax:  

hcc [ option ] file  

Files  

file is an ASCII source file containing C source code.  

Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated.  The C compiler 
supports the following command line options:  

Option Description 

 

-Dname[=val] 

 

Define the preprocessor symbol to be val. 

-Dname Define the preprocessor symbol. 

-g Produce debugging information 

-Idir Add dir to the end of the user library search path. 

-Jdir Add dir to the end of the system library search path. 

-no_locals_opt Do not optimise locals when using -optn option. 

-o file Leave output in file 

-optn Use optimised instruction group n* 

-O Optimise output 

-Ods Disable using static when compiling switch statements 

-Uname Undefined pre-processor symbol name 

-c Allow C++ single line comments 

-V Display version 

-ansi Warn about non-ANSI C source code. 

 

Table 13 C Compiler options 

 

  

* Where n > 0 this currently optimises the layout of local variables on the stack to ensure that when 
linked the optimal instruction coding is used. As this optimisation cannot be done on block scoped local 
variables, such variables are not allowed when using this optimisation. In the event that you wish to 
prevent this optimisation behaviour for some functions you can use the -no_locals_opt option or the 
compiler pragmas fixlocals and fixlocalsoff. E.g.: 

void f2(void) 
{ 

char s1[16]; 

uint8_t x; 

char s2[32]; 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 47 

 

uint16_t i; 

 

s1[0] = 0; 

s2[0] = 0; 

x = 1; 

i = 1; 

} 

 

// As f2() but within fixlocals, so no optimisation will happen 

#pragma fixlocals 

void f2_protected(void) 

{ 

char s1[16]; 

uint8_t x; 

char s2[32]; 

uint16_t i; 

  

s1[0] = 0; 

s2[0] = 0; 

x = 1; 

i = 1; 

} 

#pragma fixlocalsoff 

 

void f3(void) 

{ 

... 

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 48 

 

The Linker 
 

The linker hld is responsible for linking together the object files which make up your application 
together with some run-time startup code and any support libraries.  

 
Although the compiler driver usually invokes the linker for you, we fully describe how the linker can be 
used stand-alone.  If you’re maintaining your project with a make-like program, you may wish to use this 
information to invoke the linker directly rather than using the compiler driver.  

 

Linker function and features  

The linker performs the following functions:  

• resolves references between object modules;  

• extracts object modules from archives to resolve unsatisfied references;  

• combines all fragments belonging to the same section into a contiguous region;  

• removes all unreferenced code and data;  

• runs an architecture-specific optimizer to improve the object code;  

• fixes the size of span-dependent instructions;  

• computes all relocatable values;  

• produces a linked application which can be in a number of formats.  
 

 

Command syntax  

You invoke the linker using the following syntax:  

hld [ option | file ]...  

Files  

file is an object file to include in the link and it must be in SmartDeck object format. You do not give 
library files on the command line in this way, you specify then using the -l and -L switches described 
below.  

Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated.The linker 
supports the following command line options:  

Option Description 

 

-Aname[=val] 

 

Define the attribute name and optionally set it to val. 

-Ename Set program entry symbol to name 

-ext flat.hzx Use the external variable definitions found in the flat application .hzx file when linking a 

codelet or a codeletised/stub application. 

-extfp codelet.hzx Use the function pointers found in the codelet.hzx file to build a dispatch table in the stub 

application that the codelet will use. See Dispatch tables and codelets for more details. 

-Ffmt Set linker output format to fmt 

-g Propagate debugging information 

-Ldir Set the library search directory to dir 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 49 

 

-lx Search library x to resolve symbols 

-map file Output detailed linkage map to file 

-M Display linkage map on standard output 

-O Optimise output 

-o file Leave output in file 

-optn Use optimised instruction group ‘n’. See [MDRM] for details. 

-nocen Do not issue Compact Enable instruction. See [MDRM] for details. 

-pure Ensure only code, no data 

-Tname=addr Place section name at addr 

-V Display version 

 
Table 15 Linker option summary 

 

Linker output formats  

The linker supports a number of industry-standard file formats and also the native SmartDeck file format 
used by the debugger.  The compiler driver arranges for the linker to generate whatever is the most 
appropriate format for the tool set in use.  For the MEL target, the default is to write the application as an 
unencrypted application load unit.  

The -Ffmt switch sets the output format, and the following formats are supported:  

Format switch Format description 

 

-Fsrec 

 

Motorola S-record 

-Fhex Intel extended hex 

-Ftek Tektronix hex 

-Flst Hex dump 

-Frte Microsoft SCW run-time environment RTE and DAT format 

-Fhzx SmartDeck native, used by the debugger 

-Falu MULTOS ALU 

 
Table 16 Supported output formats 

 

Laying out memory  

The linker need to know where to place all code and data which make up an application. You tell the 
linker where to place each section using the -T switch.  

Example  

hld app.hzo -T.text=200 -T.bss=4000 -T.data=8000  

This sets the .text section to start at address 20016, the .bss section from 400016, and the .data 
section from 800016.  

Example  

You can assign where your own sections are placed.  Assume you need to place the following set of 
vectors at address FFFA16 as this is where the processor expects to find them.  
.SECT ".vectors" 

 DW irq 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 50 

 

DW nmi 

DW reset  

You use the -T switch as above to set the address: hld -T.vectors=fffa  

 

Linkage maps  

You can find where the linker has allocated your code and data in sections by asking for a linkage map 
using the -M option. The map is a listing of all public symbols with their addresses. 

A more detailed linkage map, similar to that generated by linkers for other platforms, can be generated 
using the -map option and providing the file name to write to. 

 

Linking in libraries  

You can link in libraries using the -lx option. You need to specify the directory where libraries are to 
be found, and you can do this with the -L option.  

Example  

Link the library libcrypto.hza and libio.hza found in \SmartDeck\lib: hld -L\SmartDeck\lib -lcrypto -llibio  

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 51 

 

The Archiver 
 

This section describes the archiver, or librarian, which you can use to create object code libraries.  Object 
code libraries are collections of object files which are consolidated into a single file, called an archive.  The 
benefit of an archive is that you can pass it to the linker and the linker will search the archive to resolve 
symbols needed during a link.  

 
By convention, archives have the extension .hza. 

 

Automatic archiving  

The compiler driver hcl can create archives for you automatically using the -ar option. You will find this 
more convenient than manipulating archives by hand and we recommend that you use the compiler 
driver to construct archives.    

 

Command syntax  

You invoke the archiver using the following syntax:  

har [ option ] archive file...  

Files  

archive is the archive to operate on.  

Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated.  The options 
which are recognised by the archiver are:  

Option Description 

 

-c 

 

Create archive 

-t List members of archive 

-V Display version of archiver 

 
Table 17 Archiver options 

 

Creating an archive  

To create an archive you simply use har with the name of the new archive and list any files which you 
wish it to contain.  The archive will ne created, overwriting any archive which already exists with the 
same name.  

Example  

To create an archive called cclib.hza which initially contains the two object code files ir.hzo and 
cg.hzo you would use:  

har -c cclib.hza ir.hzo cg.hzo  

The archiver expands wildcard file names so you can use  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 52 

 

har -c cclin.hza *.hzo  

Listing the members of an archive  

To show the members which comprise an archive, you use the -v switch. The member’s names are listed 
together with their sizes.  If you only give the archive name on the command line, the archiver lists all the 
members contained in the archive.  However, you can list the attributes of specific members of the 
archive by specifying on the command line the names of the members you’re interested in.  

Example  

To list all the members of the archive cclib.hza created above you’d use:  

har -t cclib.hza  

To list only the attributes of the member ir.hzo contained in the archive  cclib.hza you’d use:  
har -t cclib.hza ir.hzo  

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 53 

 

The Object File Lister 
 

The object file lister hls is a general-purpose program which can display useful information held in 
unlinked object files and linked executables.  It can:  

 
• show disassembled code  

• show section addresses and sizes  

• show exported symbols with their types and values  

• show imported symbols with their types  

 

Typically it’s used to show object code generated by the SmartDeck compilers, or to produce an 
intermixed listing of code and high-level source.  

 

Command syntax  

You invoke the object filer using the following syntax:  

hls [ option ]... file  

Files  

file is the object file to list.  

• Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated. The object file 

lister supports the following command line options:  

Option Description 

 

-A 

 

Show object file attributes 

-e Show entry points 

-E Evaluate expressions in listings for .SPACE, DB, DW and DL instructions. 

-globals Dump the symbols, their offsets and sections from .SB, .DB and .PB. 

-pt Generate patch table for multiple hzx files. 

-p Show public symbols defined in the module 

-P Show link order priority 

-perso Output the names and locations of data items declared in the melperso section (or static 

section if no melperso section is defined). 

-s Show all symbols defined or used in the module 

-src Include the  

-Spath Add path to the list of paths to search for source files. 

-t Display section start address, end address and size. 

-v Show all object bytes generated in the listed 

-x Show externals 

-V Display version 

 
Table 18 Object file lister option summary 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 54 

 

Listing section attributes  

You can quickly see a summary of each section in an executable using the -t switch. This presents a 
summary for each section showing its start address, its end address, its size in decimal and hexadecimal, 
and the section name.  

Example  

hls -t app.hzx  

This lists the contents of all sections in the file app.hzx.  

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 55 

 

 

 

The RSA Key-Pair Generator 
 

This section describes the hkeygen program that generates RSA key-pairs. The hkeygen program takes 
as input the required modulus size and an optional exponent value and generates an appropriate RSA 
key-pair. The program generates a file containing the private part of the key-pair and a file containing the 
public part of the key-pair. The private part of the key-pair is generated in its Chinese Remainder Theorem 
form.   The output files produced by the program can optionally be produced in a form suitable for 
inclusion into a C program. The default behaviour produces binary files that can be used for certificate 
generation or as the application key.   

 

Command syntax  

You invoke the key-pair generator using the following syntax:  
hkeygen [ option ]...  

Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated. The options -
modsize, -private and -public must be supplied. All the options which are recognised by the key-
pair generator are defined in the following table.  

Option Description 

 

-cfile 

 

Output files are generated in a form suitable for inclusion into a C 

program. 

 

-exponent n Specify the exponent value to be ‘n’ which is an arbitrary sized 

decimal number. 

 

-modsize n Specify the modulus size in bits. Note that the modulus size must 
be divisible by eight. 
 

-private f Specify the name of the file to contain the private part of the keypair. 

-public f Specify the name of the file to contain the private part of the keypair. 

-v Verbose mode 

-V Display version 

 
Table 19 Key-pair generator options 

 

Binary output files  

The output file format for the private part of the key-pair is  

• a single byte that specifies thelength of the modulus, in bytes  

• the public modulus  

• the exponent zero-padded to modulus size  

• the private modulus  

• the private modulus in CRT form (p, q, dp, dq, u) each element being modulus/2 bytes long 
 

The output file format for the public part of the key-pair is  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 56 

 

• a single byte that specifies the length of the modulus, in bytes  

• the public modulus  

• the exponent zero padded to modulus size  
• zero padding of (modulus size * 3.5) to make the file the same size as the private part.  

 

C format output files  

The <rsa.h> library is used when the key-pair generator creates output files suitable for inclusion in a C 
program. The private part of the key-pair contains an initialised definition of a struct variable of type 
RSAPrivateCRTKey. The public part of the key-pair contains an initialised definition of a struct variable 
of type RSAPublicKey. Both of the output files define the macros MODLEN and EXPLEN so if a 
compilation unit includes both files it will need to #undef these macros prior to the second inclusion.  

For example the key-pair generator could be run as follows...  
hkeygen -modsize 1024 -public pub.h -private priv.h -cfile  

...which will generate the files pub.h and priv.h containing the public and private parts of the key-
pair respectively.  These files can be used in an application as follows:  

#include <multoscomms.h> 

#include <string.h> 

#include "pub.h" 

#undef MODLEN 

#undef EXPLEN 

#include "priv.h" 

unsigned char plaintext[MODLEN]; 

unsigned char ciphertext[MODLEN]; 

unsigned char recoveredtext[MODLEN]; 

void main(void 

{  

int i; 

for (i = 0; i < MODLEN; ++i) 

plaintext[i] = i; 

RSAEncipher(&publicKey, plaintext, ciphertext); 

RSADecipher(&privateKey, ciphertext, recoveredtext); 

if (memcmp(plaintext, recoveredtext, MODLEN)==0) 

ExitSW(0x6400); 

ExitSW(0x9000); 

  }  

This example tests that the enciphered data can be succesfully deciphered (a process that hkeygen has 
already done as part of its verification process).  

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 57 

 

 

ALU Generation 
 

This section describes the halugen program that generates standard MULTOS application load units 
(ALUs). The halugen program takes as input a linked executable file (.hzx) and can produce unprotected, 
protected or confidential ALU’s as output.   

 

To produce a protected or confidential ALU the tool must be supplied with an application private key 
which can be created using the hkeygen program. The corresponding public key should be used in the 
creation of the load and delete certificates for the application.  

 
To produce a protected or confidential ALU the tool can either use default key values for development 
cards or alternatively key values can be supplied as input to the tool. For protected or confidential ALU’s 
the key used by MULTOS to compute/verify the hash digest of the application must be supplied. To 
produce a confidential ALU  the public key certificate of the MULTOS card and it’s associated transport 
key certifying key must be supplied.  

 

For confidential ALU’s the default behaviour is to use a hardcoded key value for triple DES enciphering of 
the entire application.  A specific key can be specified on the command line to the tool using the -DESkey 
or -AESkey options. 

Practically in a development environment there is little need for protected or confidential ALUs; these 
come in to their own in a live production environment where HSM based data preparation systems are 
used to prepare personalised ALUs. 

 
 

Command syntax  

You invoke the ALU generator using the following syntax:  

halugen [ option ] filename  

Options  

option is a command-line option.   Options are case sensitive, cannot be abbreviated and are defined 

below.  

Option Description 

 

-ahashk f 

 

Specify the name of the file containing the key for the MULTOS 
Asymmetric Hash. This file should be in the same format as that of 
a public key file as generated by hkeygen. This option is 

required for producing protected and confidential ALU’s if the - 

cardtype option isn’t supplied. 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 58 

 

-appk f Specify the name of the file containing the application private key. 
The file should be in the same format as that of a private key file 
as generated by hkeygen. This option is required for producing 

protected and confidential ALU’s. 

 

-cardtype ct Specify type of card; one of HitachiV3, HitachV4, KeycorpInfineonV4, 
KeycorpInfineonV4P, MI-M3, MI-M4, MI-M5, ersa192, ersa256, aes16, 
aes24, aes32. 
 

-confidential Produce a confidential ALU. This option requires the option -appk 
and either -cardtype or -ahashk, -mcdpkc, -tkck options. If the 
option - DESkey is not supplied a 16 byte random number is used 
as the key value for Triple DES enciphering of the application. 
 

-dataonly When used with the –confidential switch, this switch indicates that only 
the data section will be encrypted. 
 

-autoPad Automatically pad v4 AUs correctly for confidential ALU generation. 
 

-DESkey “key” Specify the DESkey for the enciphering of confidential ALUs. 
Either 8 or 16 byte keys are supported. The key is interpreted as a 
sequence of space seperated hexadecimal numbers. If this option 
isn’t supplied then a random 16 byte number is used as the key 
for enciphering the ALU. 
 

-AESkey “key” Specify an AES key for enciphering confidential ALUs, can be 16, 24 or 32 
bytes. 
 

-init sym=val Redfine the initialisation of a global static variable. The value is a string 
of hexadecimal numbers. If the symbol is a pointer then the locations 
pointed at are updated. 
 

-mcdpkc f Specify the name of the file containing the public key certificate of 
the MULTOS card for which the confidential ALU is being  generated.  
This option is required for producing a confidential ALU without the  
- cardtype option. 
 

-o filename Specify the filename the ALU is to be written to. By default this 
will be the name of the .hzx file with a .alu suffix. 

 

-pad N Pad the code and data sections of the ALU so they are a multiple 
of N bytes. For MULTOS V3 the code and data must 
be padded to 32 byte multiples. 
 

-protected Produce a protected ALU. This option requires the option -appk 
and either -cardtype or -ahashk options. 
 

-tkck f Specify the name of the file containing the public key to decipher 
the MULTOS public key certificate. This file should be in the same 
format as that of a public key file as generated by hkeygen. This 

option is required for producing confidential ALU’s when the 
option - cardtype isn’t supplied. 

 

-V Display version 

  

 

Table 20 ALU generator options 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 59 

 

 

ALC / ADC Generation 
 

This section describes the melcertgen program that generates Application Load Certificates and 
Application Delete Certificates for MULTOS Developer cards. It is useful for when you wish to test with 
confidential and protected ALUs. Otherwise for plaintext ALUs the other SmartDeck tools will generate 
default certificates on the fly. 
 
The application’s properties (sizes, application ID, FCI record etc) can be extracted from an hzx file, an alu 
file or can be provided via command line options individually. Individual options override values found in 
the alu which in turn override values found in the hzx file. 
 

Command syntax 

melcertgen certName [options] 
 
certName is the root name of the certificates to be generated. The tool generates an ALU and an ADC. 
Optionally it can also create a freeze certificate for step/one cards. 
 
Options 

Options are case sensitive, cannot be abbreviated and are defined below. Options marked with # are only 

required if the –hzx file option is not specified. 

Option Description 

 

-aid a 

 

Hexademical Application ID of the application being certified 

-cs n Code size in bytes (can be used to override the .hzx or .alu size) 

-ds n Data size in bytes (can be used to override the .hzx or .alu size) 

-ss n Session data size in bytes (can be used to override .hzx size) 

-dfs n Directory file size in bytes (can be used to override the .hzx or .alu size) 

-fcis n FCI record size in bytes (can be used to override the .hzx or .alu size) 

-alist x Specify access_list value (in decimal) of x – default is 3. This will override 
the value of the access_list attribute (if provided) 
 

-pkey file Binary file containing the application provider public key to be certified. 
 

-hzx file Application to produce the certificates for. 

-alu file Get data, code, fci, dir sizes and codehash from the alu file (overrides 
.hzx file values). 
 

-addstat n Add n extra bytes of static above the number found in the .hzx file to 
the ALC’s static data size. 
 

-mcdno mcd_number 8 bytes Hexadecimal mcd_number to be set in the certificates. Default is 
all zeros. 
 

-pad n Pad data sizes in hzx file to n bytes. The value of n for MULTOS v4 is 8. 

-confidential Produce a confidential ALC. 

-protected Produce a protected ALC. 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 60 

 

-cardtype ct Specify type of card; one of HitachiV3, HitachV4, KeycorpInfineonV4, 
KeycorpInfineonV4P, MI-M3, MI-M4, MI-M5, MI-S4, ersa192, ersa256, 
aes16, aes24, aes32 
 

-sha1 Include a SHA1 code hash in the ALC (requires -hzx option) 

-sha256 Include a SHA256 code hash in the ALC (requires -hzx option) 

-adf Generate a JSON formatted application definition file for the KMA. 

-F Generates a freeze certificate (step/one cards only). 

 
Table 20b – ALC/ADC Generator Options 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 61 

 

tion  

Example ALU and ALC generation commands for Developer Cards 

The following commands show how ALUs and ALCs can be created for MULTOS developer cards. 

 

Plaintext ALUs 

halugen Eloyality.hzx -o Eloyality_plain.alu 

melcertgen Eloyality_plain_v4 -hzx Eloyality.hzx -cardtype MI-M3 -sha1 

 

Protected ALUs 

halugen -cardtype MI-M3 -protected -appk app_provider.priv Eloyality.hzx -o Eloyality_prot_v4.alu 

melcertgen Eloyality_prot_v4 -hzx Eloyality.hzx -pkey app_provider.pub -protected -cardtype MI-M3 

 

Confidential ALUs 

halugen -cardtype MI-M3 -confidential -appk app_provider.priv -dataonly -autoPad Eloyality.hzx -o 
Eloyality_conf_v4.alu 

melcertgen Eloyality_conf_v4 -hzx Eloyality.hzx -pkey app_provider.pub -pad 8 -confidential -cardtype 
MI-M3 

 

ALU generation commands for Community Cards 

For community cards (which use live keys) the individual keys have to be specified instead of using the –
cardtype option. ALCs need to be obtained from the MULTOS KMA. 
 
Protected ALUs 

halugen -protected -ahashk hashmod_0247.pub -appk app_provider.priv Eloyality.hzx -o 
Eloyality_prot_v4.alu 
 
Confidential ALUs 

halugen -tkck tkck0203.key -mcdpkc 1506005D2A56.pkc -ahashk hashmod_0247.pub -confidential -
dataonly -autoPad –appk app_provider.priv Eloyality.hzx -o Eloyality_conf_v4.alu  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 62 

 

MULTOS File Dump 
 
This section describes the meldump tool that lists the contents of various files used in MULTOS 

application development. The tool can list the following file formats  

 
• Application Load Units (ALU) including disassembly of the code section of an ALU.  

• Application Load Certificates (ALC) .  

• Application Delete Certificates (ADC) .  

• Freeze Certificates (AFC). 

• MULTOS Public Key Certificates (PKC).   

• RSA Key file (such as that produced by hkeygen).  

• An arbitrary binary file.  
 
With certificate files for development cards the public key they contain can be deciphered and the 
certficates can be authenticated.   

 

Command syntax  

You invoke the meldump tool using the following syntax: meldump [ options ] 

filename  

If no options are supplied then the file is dumped as a hexadecimal/ascii.   

Options  

options are command-line options.   Options are case sensitive, cannot be abbreviated and are defined 

below.  

Option Description 

 

-alu 

 

Interpret file as an application load unit. 

-alc Interpret file as an application load certificate. Works on raw ALC files or ALR files generated 

by StepXpress. 

 

-adc Interpret file as an application delete certificate. Works on raw ADC files or ADR files 

generated by StepXpress. 

 

-afc Interpret file as a freeze certificate. 

-cardtype ct Specify type of card; one of HitachiV3, HitachV4, 

KeycorpInfineonV4, KeycorpInfineonV4P, MI-M3, MI-M4, MI-M5, MI-S4, ersa192, ersa256, 

aes16, aes24, aes32 

 

-cfile varname Output file as a C initialised variable varname. 

-codehash Include the SHA-1 of the code section when using -alu option. 

-d Disassemble the code section of an ALU. 

-decipher Decipher the public key part of the certificate ( -cardtype 

option required). 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 63 

 

-key Interpret file as an RSA key as produced by hkeygen. 

-pkc Interpret file as a MULTOS card Public Key Certificate. 

-tkck f Specify the name of the file containing the public key to decipher 
the MULTOS public key certificate. This file should be in the same 
format as that of a public key file as generated by hkeygen. This 

option is required for producing confidential ALU’s when the 
option - cardtype isn’t supplied. 

 

-V Display version 

 
Table 21 ALU generator options  

 

Example commands  

To list an ALU   
  meldump -alu eloyalty.alu  

The command  
  meldump -alc mycert.alc -cardtype HitachiV4 -decipher  

will list the contents of the ALC including the public key.   

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 64 

 

The Hex Extractor 
 

The hex extractor hex is used to prepare images in a number of formats to burn into EPROM or flash 
memory. Although the linker is capable of writing all the formats described here, it doesn’t have the 
capability of splitting files for different bus or device sizes.  

Command syntax  

You invoke the hex extractor using the following syntax:  

hex [ option ]... file  

Files  

file is the object file to convert.  

Options  

option is a command-line option.  Options are case sensitive and cannot be abbreviated.  The hex 
extractor supports the following command-line options:  

Option Description 

  

-Ffmt Select output format fmt 

-o file Write output with file as a prefix 

-Tname Extract section name from input file 

-V Display tool version information 

-Wwidth Set bus width to width 

 
Table 22 Hex extractor option summary  

Supported output formats  

The following output file formats are supported:  

-Fsrec Motorola S-record 

-Fhex Intel extended hex 

-Ftek Tektronix hex 

-Flst Hex dump 

-Fapp APP format for codelets 

Preparing images for download  

When you prepare to download applications to a monitor held in ROM, you usually need the application 
in a single industry-standard format such as S-records or Intellec hex format.  What you don’t need to do 
is split high and low bytes, and you won’t need to split across ROMs.  

The extractor generates files in this format by default—all you need to provide is the format you need the 
file in.  

Example  

hex -Fhex app.hzx  

This will generate a single Intellect-format file, app.hzx.hex, which contains all code and data in the 
application.  The addresses in the output file are the physical addresses of where the 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 65 

 

code and data are to be loaded.  

Preparing images for ROM  

Preparing ROM images is more involved than preparing images to download using a monitor.  You may 
need to split images across multiple ROMs, for instance to separate high and low bytes for a 16-bit bus, or 
to split a large application across multiple ROMs because a single ROM doesn’t have the capacity to hold 
the whole application. The extractor copes with both of these requirements.  

Example  

hex -B256 app.hzx -Fhex  

This splits the application file app.hzx into multiple pieces, each of which is 256 kilobits. The -B option 
matches the part names of most 8-bit EPROMs, so the application is split into 256 kilobit sections, or 32 
kilobyte chunks.  -B256 could equally well have been specified using -K32.  

Example  

hex -W2 app.hzx -Fhex  

This splits the application file app.hzx into high and low bytes for a processor with a 16-bit bus. The 
bytes at even addresses are placed in one file, and the bytes at odd addresses in a second.  

Example  

hex -W2 -B512 app.hzx -Fhex  

This splits the application file app.hzx into high and low bytes for a processor with a 16-bit bus and also 
splits each of these into ROMs which have a 512 kilobit capacity.  The bytes at even addresses are placed 
in one set of files, and the bytes at odd addresses in a second set of files.  

 

Extracting parts of applications  

By default the extractor will generate output files which contain the whole application.  In some cases you 
may need to extract only the contents of certain sections or fixed range of addresses.  

Extracting sections  

If you need only to extract only certain sections from a file, you can use the -T option to specify those to 
extract.  

Example  

hex -T.text -T.vectors app.hzx  

This will generate a single file, app.hzx.bin, which contains only the sections .text and .vectors 
from the file app.hzx.  

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 66 

 

  

Codelets 
 

Codelets are a way to place commonly-used code into ROM or EEPROM so a single copy of the code can 
be shared by many applications.  Because ROM uses much less die area that EEPROM, it’s also a good way 
of squeezing bigger programs into the small space of a smart card.  

  

Codelets are similar to shared libraries that you’ll find in modern operating systems, and share some of 
the problems too.  In the following sections you’ll be shown how codelets can provide solutions to some 
common problems such as:  

 

• Moving code from your application in EEPROM to a ROM codelet to reclaim data space in EEPROM.  

• Share code that is common between one or more applications by moving the shared code into a 
codelet.  

• How to co-ordinate and develop applications using more than one codelet.  

 

A guide to setting up Eclipse for Codelet development follows this chapter. 
 

Your first codelet  

Let’s start off with the simplest scenario where you have two functions in your application, and you’d like 
to move one of them into a codelet.  For now we will assume that this function doesn’t use any global 
data (that includes MULTOS static, public, and session data) as this complicates matters somewhat.  

We’ll break the application into two source files:  

 
• func.c contains the source code of the function we’ll be putting into the codelet;  

• main.c contains the code of our main application that makes calls to the codeletized function. 
 
Here are the two source files; they don’t do anything astoundingly useful, but serve admirably for 
demonstrations purposes:  
 

Source code for “func.c”  

 

// Count number of set bits in a word 

unsigned countBitsSet(unsigned x) 

{ 

int n = 0; 

while (x){  

x &= x-1; 

++n; 

} 

return n; 

}  

 
Source code for “main.c”  

 

// Main application  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 67 

 

#include <multoscomms.h>  

// External function prototype 

unsigned countBitsSet(unsigned);  

 

void main(void) 

{  

int n = countBitsSet(0x5555); // 8 bits are set, 8 bits are clear  

}  

 
You know how to compile and link these together without using a codelet; you do it like this: 

 

hcl main.c func.c  

 

This links all object code into the main application and leaves the output in main.hzx. What we need to 
do now is move func out of the main application and into a codelet.  

 
We do this in four steps:  

1. Mark the functions you want to export as codelet entry points  
You need to mark the functions you want exported as codelet entry points by writing “__codelet” after 
the function declaration in the module that defines the function. Using our example:  

unsigned countBitsSet(unsigned x) __codelet // codelet entrypoint 

{  

int n = 0; 

 

while (x){ 

x &= x-1; 

++n; 

} 

return n; 

   }  

You need to mark the entry points because codelet functions use a calling convention that is slightly 
different from the regular calling convention.  

2. Choose a codelet ID by which the codelet is known  
All codelets that are included in a MULTOS card need distinct codelet IDs. You can request your own 
unique codelet ID from MAOSCO, and let’s say that in this instance codelet ID 21 has been assigned to us 
for our example codelet.  

3. Compile and link the codelet  
To generate the codelet is simply a matter of using the -codelet option on the command line and 
supplying the codelet ID information:  

 
hcl -codelet -Acodeletid=21 func.c  

 
The tools write the file “func.hzx” that contains the code section of the codelet, and the file 
“func.hzl” that contains the information used by clients on resources the codelet needs, the codelet ID 
to use, what the exported functions can be called and how to call them.  

4. Compile and link the client that uses the codelet  
To use the functions exported by a codelet, all that clients need to do is link in the codelet library 
generated as part of the codelet linkage above—it’s just like an additional object 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 68 

 

module:  

 
hcl func.hzl main.c  

 
The tools take care of selecting the correct calling sequence to use and the special client-codelet 
interworking.  Note that we didn’t make any changes to the client program at all—the function prototype 
of countBitsSet used in main.c does not need the __codelet keyword to identify that it comes from 
a codelet.  This makes it straightforward for you to move functions around in your codelets whilst they’re 
in development without needing wholesale, error-prone modification of client code.  
 

There is one thing to say, however: if you change the implementation of the codelet, all clients that use 
that codelet must be recompiled using the new codelet library (the .hzl file). This is necessary because of 
the nature of MULTOS and the way that codelets work.  

 

Note:  

How you get a codelet onto a MULTOS card, whether in ROM or EEPROM,  is not covered here, and you 
will need to work closely with the MULTOS operating system implementer to deploy your codelet. 
However, as codelets are nothing more than pure MEL code it’s worth knowing you can extract the code 
section of a linked file using the hex utility.  This utility supports output in a number of formats including 
straight binary, Motorola S-record and Intel Hex. For example:  

Hex –Fbin func.hzx –T.text  

will extract the code as a straight binary image to func.hzx.bin.  

 

Codelets that need static data  

Here we address the issue of how to go about using data in a codelet.  

Codelets are pure code and have no data of their own  

Codelets do not have static data allocated for them—they are pure code.  Any global, static data that a 
codelet needs to refer to must be allocated in the application that calls the codelet. 

 

There are three methods for sharing static data with a codelet :  

• Allocating codelet static data in the application, with a structure known to the application and the 
codelet. Both the codelet and the application can address the static data directly using the MULTOS SB 
register.  

• Sharing the application’s variables definitions with codelets. 
• Pass the codelet a pointer to some of the application’s static data; when the codelet needs to use 
static data, it can dereference the pointer passed to it.  
 
Allocating codelet static data in the application  

The simplest way for a codelet to have static data is to let the compiler/linker allocate the codelet static 
data in the client application. This approach allows the source code of a codelet to be written like 
conventional C code and is efficiently implemented by the compiler/linker. Unfortunately using this 
approach an application cannot link with more than one codelet that requires static data (note however 
that several pure code codelets can also be linked in).  
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 69 

 

 

Sharing the application’s variables definitions with codelets 

This method uses the .hzx file of the flat application to provide the memory map to each codelet and the 
stub application. The following is an example of a build using this method. 

 

set COMPILER_OPTS=-I. "-Jc:\program files (x86)\smartdeck\include" -D__SMARTWORKS__ -

D__MULTOS__  -O  

set LINKER_OPTS=-Fhzx "-Lc:\program files (x86)\smartdeck\lib" "c:\program files 

(x86)\smartdeck\lib\crt0.hzo" –g -O 

set CODELET_OPTS=-codelet -s- -DLEVEL=__codelet –g 

 

echo Building flat application 

hcc %COMPILER_OPTS% main.c -o main.hzo 

hcc %COMPILER_OPTS% session.c -o session.hzo 

hcc %COMPILER_OPTS% static.c -o static.hzo 

hcc %COMPILER_OPTS% codelet1.c -o codelet1.hzo 

hcc %COMPILER_OPTS% codelet2.c -o codelet2.hzo 

hld %LINKER_OPTS% -o app_flat.hzx main.hzo session.hzo static.hzo codelet1.hzo 

codelet2.hzo 

 

echo Building codelets 

hcl %CODELET_OPTS% -ext app_flat.hzx -Acodeletid=22  codelet2.c  -o codelet2.hzx 

hcl %CODELET_OPTS% -ext app_flat.hzx -Acodeletid=21 codelet1.c  -o codelet1.hzx 

 

echo Linking codeletised application 

hld %LINKER_OPTS% -ext app_flat.hzx  -o app_codeletised.hzx main.hzo codelet1.hzl 

codelet2.hzl  

 

The codelet source needs to contain extern references for the data elements it will use as follows 

 

#include <multos.h> 

#include <string.h> 

 

#ifndef LEVEL 

#define LEVEL 

#endif 

 

extern BYTE g_value; 

 

void encipher(BYTE *key, BYTE *data, BYTE numBlocks) LEVEL 

{ 

 if (g_value) 

  …. 

} 

 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 70 

 

Passing static data by reference  

This section will examine how a codelet can reference static data through a pointer passed to it. This 
mechanism is well known and widely used in many architectures, usually to allow shared code.  

First we’ll present a function that will be placed into a codelet that does some DES-based cryptography 
where the plaintext and ciphertext addresses are passed to it, but the DES keys are held in static data 
as they don’t change.  

We’ll define a “global” structure that holds the information for use by the codelet; in this case we hold 
some DES keys and the information used to derive those keys.  We’ll place this structure into a header 
file along with the function declarations that will work with this data. 

Code for “session.h”  

 
#ifndef SESSION_H 

#define SESSION_H 

typedef struct 

{ 

// Static encryption key 

unsigned char staticKey[8];  

// Authentication encryption key 

unsigned char authEncKey[8];  

// Key derivation data 

unsigned char derivationData[8]; 

// And anything else we might wish to keep hold of... 

} GlobalData; 

 

void genDerivationData(GlobalData *globals,unsigned char *hostChallenge,unsigned char 

*cardChallenge); 

 

void genAuthEncKeys(GlobalData *globals);  

void verifyCryptogram(GlobalData *globals,unsigned char *cryptogram); 

#endif  

 

Now we can write the code that implements these functions:  

Code for “session.c”  

 
#include "session.h"  

void genDerivationData(GlobalData *globals,unsigned char *hostChallenge,unsigned char 

*cardChallenge) __codelet  

{ 

memcpy(globals->derivationData, hostChallenge, 2); 

memcpy(globals->derivationData+2, cardChallenge, 2); 

memcpy(globals->derivationData+4, hostChallenge+2, 2); 

memcpy(globals->derivationData+6, cardChallenge+2, 2); 

} 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 71 

 

 

void genAuthEncKeys(GlobalData *globals) __codelet {  

// Encrypt derivation data with static keys giving session keys 

DESEncipher(globals->derivationData,globals->authEncKey,globals->staticKey); 

}  

void verifyCryptogram(GlobalData *globals) __codelet 

{ 

// More wacky crypto stuff here 

}  

 

Notice that all static data is referenced through the global data structure. Now we’ll write a code for the 
client application; the client needs to allocate the static data used by the codelet functions and pass the 
address of that data to each codelet function when it calls it.  

Code for “main.c”  

// Main application 

#include <multoscomms.h> 
#include "session.h"  

// Static storage used by the codelet. 
static GlobalData globals ={  
// Static key{ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,0xAA, 0xAA 
}};  

// Static storage for us. 
static unsigned char hostChallenge[8]; 
static unsigned char cardChallenge[8]; 
 
void main(void){  

switch (INS) 
{ 

case INITIALIZE:  
// Store host challenge 
memcpy(hostChallenge, apdu, 8); 

// Generate a random card challenge. 
GenerateRandom(cardChallenge);  

// Stir the key derivation data. 
genDerivationData(&globals, hostChallenge, cardChallenge);  

// And generate the authentication encryption session keys. 
genAuthEncKeys(&globals);  

// Send card challenge back to host. 
memcpy(apdu, cardChallenge, 8); 
ExitLa(8);  

case EXTERNAL_AUTHENTICATE: 
// Verify the host cryptogram. 
verifyCryptogram(&globals, apdu);  

// If we get here the cryptogram was verified...  

 
This example is a little contrived, but explains the idea.  

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 72 

 

Caveats  

Disabling the code generator’s use of static data  

The SmartDeck code generator uses various heuristics and optimization techniques to reduce the code 
and data size of applications.  However, some of these optimizations make use of tables in static storage, 
for instance switch statements can effectively use jump tables held in static.  

If you’re compiling code for a codelet, the last thing you want is the compiler allocating jump tables into 
static storage, so there is a compiler switch to disable the use of static storage when compiling.   

This switch, -Ods, forces the compiler to use different code generation techniques to ensure that it 
doesn’t require static data.  

 

If you compile your source files using the -codelet switch, the -Ods switch is automatically sent to the 
compiler.  

Avoiding static data in codelets  

To ensure that a codelet doesn’t require static data the -pure option can be used on the command line 
to hcl. Note that static data will be required if your codelet contains any literal strings.  

Function pointers and codelets  

Functions in codelets are called by a special mechanism that differs significantly from a regular function 
call. The compiler and linker work together to make calling codelet functions just like calling regular 
functions at the source code level.  

 

At the machine level there is a difference, and the compiler and linker cannot cope with calling functions 
in codelets through a function pointer.  If you call a codelet function through a function pointer, the stack 
layout will not be set up as the codelet expects and will lead to unpredictable behaviour.  

 

At present neither the compiler nor linker will diagnose taking the address of a codelet or calling a codelet 
through a function pointer, so beware.  

 

Dispatch tables and codelets 

There is a special case whereby a codelet function needs to call functions contained in the codelet via a 
dispatch table stored in static memory. For example: 

 

#include <multos.h> 
 
extern void chExecuteCmd0 (void); 
extern void chExecuteCmd1 (void); 
 
#pragma melstatic 
 
/* The command handler lookup table. */ 
FN_PTR apfCommandHandlerTable[] = { 
   chExecuteCmd0, 
   chExecuteCmd1 
}; 

 

The codelet, being pure code, cannot store that table itself, therefore that must be done by the 
application that is calling the codelet. When linking the application, the values of the function pointers 
need to be provided. First compile and link the codelet, then pass the codelet’s .hzx file to the link of the 
application using the -extfp option. 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 73 

 

To ensure that the code for the functions is included in the codelets (as they are not directly referenced), 
they must be declared with the __used attribute as follows: 

 

void chExecuteCmd1 (void) __used 
{ 
    … code goes here 
} 

 

 

How to customise codelets and patch up broken code  

This section describes how to write a codelet so it can be updated after the codelet has been placed into 
ROM. Obviously, if a bug is found in a codelet and needs to be fixed, and the codelet has been committed 
to ROM and can’t be patched, a new mask is required:  having a capability to replace a defective function 
in ROM with a correct one in EEPROM is vital.  

Tool support for patchable codelets  

The C compiler recognises the qualifier “__patchable” after a function declaration.  This informs the 
tools that enough scaffolding should be put in place so that, if required, a function’s implementation can 
be replaced.  

 
Consider our previous codelet:  

 
#include "session.h"  

void genDerivationData(GlobalData *globals,unsigned char *hostChallenge,unsigned char 

*cardChallenge) __codelet  

{  

memcpy(globals->derivationData, hostChallenge, 2); 

memcpy(globals->derivationData+2, cardChallenge, 2); 

memcpy(globals->derivationData+4, hostChallenge+2, 2); 

memcpy(globals->derivationData+6, cardChallenge+2, 2); 

} 

 

void genAuthEncKeys(GlobalData *globals) __codelet {  

// Encrypt derivation data with static keys giving session keys 

DESEncipher(globals->derivationData,globals->authEncKey,globals->staticKey); 

}  

void verifyCryptogram(GlobalData *globals) __codelet 

{  

// More wacky crypto stuff here 

}  

 

Each of these functions is non-patchable, so the functionality of each is fixed. In order to allow these 
functions to be patched, you would use the __patchable qualifier rather than the __codelet qualifier, 
so the code now becomes:  

#include "session.h"  

void genDerivationData(GlobalData *globals,unsigned char *hostChallenge,unsigned char 

*cardChallenge) __patchable 

{ 

memcpy(globals->derivationData, hostChallenge, 2); 

memcpy(globals->derivationData+2, cardChallenge, 2); 

memcpy(globals->derivationData+4, hostChallenge+2, 2); 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 74 

 

memcpy(globals->derivationData+6, cardChallenge+2, 2); 

} 

 

void genAuthEncKeys(GlobalData *globals) __patchable 

{  

// Encrypt derivation data with static keys giving session keys 

DESEncipher(globals->derivationData,globals->authEncKey,globals->staticKey); 

} 

 

void verifyCryptogram(GlobalData *globals) __patchable{  

// More wacky crypto stuff here}  

The tools now arrange to call each of these functions using a table held in the host application’s static 
area in EEPROM.  The table in EEPROM initially points to the codelet entry points in ROM.  However, 
because the table is held in the application, not in the codelet, the table can be updated to point to 
replacement functions provided by the application.  Should we wish to replace a function, for instance 
verifyCryptogram, then we simply override it’s implementation in our application program by 
declaring this function with the “__patched” qualifier like this:  

// Main application 

#include <multoscomms.h> 

#include "session.h" ...  

// Replace codelet version of verifyCryptogram 

void verifyCryptogram(GlobalData *globals) __patched 

{  

// Corrected wacky crypto stuff here 

   } 

 

   void main(void 

   {  

 switch (INS) ...  

 
Notice that the function is declared __patched so that the compiler generates the correct function 
prologue and epilogure for a codeletised function.  It’s that simple! The tools take care of constructing the 

patch table so building the patch table is something that you just don’t need to consider. Now, all 
function calls to verifyCryptogram, whether from the host application or by the codelet, will 
call the replacement function in the application.  
 
If the patched function IS NOT called directly from the host application, it will also need to be 
given the __used attribute so that the linker knows to keep the code in the application even 
though it isn’t referenced directly. 
 

The overhead of codelet calls  

In this section we deal with the overhead imposed by codelet functions.  

Static overhead of a codelet function  

Each function that is marked __codelet, __patchable or __patched uses a function prologue and 
epilogue sequence that differs from non-codelet functions. Depending upon the formal parameter types 
and the function return type, this can be up to an extra four bytes of code per function that takes care of 
codelet linkage — this is per function, and not per function call.  

Each function that is marked __patchable requires four bytes of static memory for an entry in the patch 
table held in the host application.  If a function is marked __codelet, there is no overhead as a patch 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 75 

 

table entry is not required.  

Dynamic overhead of a codelet function  

All calls to functions marked __codelet or __patchable, from within the same codelet, from another 
codelet, or from an application, require an additional two bytes of stack to save the codelet ID (CI) 
register at the point of the codelet call.  

Static overhead of calling a codelet function  

Calls to functions within the same linked unit (either codelet or application) that are not marked 
__codelet nor __patchable use a three-byte instruction at each call site.  In this instance this means a 
function call within a codelet to a function in the same codelet, or a function in an application to another 
function in the same application.  

Calls to functions marked __codelet from an application or from another codelet require an eight-byte 
call sequence at each call site.  A call to a function marked __codelet from the same codelet requires a 
six byte call sequence at each call site.  

A call to a function marked __patchable requires an eight-byte call sequence at each call site 
irrespective of where the call site is located (a call through the patch table is always generated).  

 
  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 76 

 

Setting up Eclipse for Codelet Development 

Basic Codelets 

Linker Settings 

To build a project as a codelet you need to change the linker settings for the codelet project as follows: 
the SmartDeck user guide explains the switches. However, please read Advanced Codelet Development if 
you intend to start using multiple patchable codelets. 

 

 
 

To build the "main" application so that it uses the codelet you need to change its linker settings too by 
telling it the library file to use: 

 

 
 

$WS is an environment variable set in the Environment section - you could use anything. 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 77 

 

 
 

 

IMPORTANT NOTES: 

1. You can set up dependencies on codelet projects under Properties->C/C++ General->Paths and 
Symbols->References. 

2. If you have source code files with the same name in your main app and codelet, the debugger will 
get very confused, especially when setting breakpoints. 

3. You can have more than one codelet 
4. Codelets calling other codelets is supported. 

 

Debugging Codelets 

In order to debug using codelets, you need to add the full path to the HZX files in the debug.txt (or 
whatever you have called it) file. e.g. 

 

c:\program files (x86)\smartdeck\bin\hsim_dbg.exe 

f3000003 

-selectaid f3000003 

-apdu 7001000002 

C:\Users\ctorr\Documents\eclipse-multos\mycodelet2\Debug\mycodelet2.hzx 

 

Advanced Codelet Development 
The following instructions apply if 

  

a. Your application makes use of more than one codelet with patchable functions OR 
b. Two or more codelets are interdependent (i.e. they both call functions within each other) 

  

The Issues Involved 

It is important to remember that codelets are not the same as code libraries. A codelet is a fully linked, 
executable piece of code, whereas a library contains unlinked fragments of code. Also, once built and 
masked into the product at manufacturing time, codelets cannot be modified. 

  

In order, therefore, for a function in a codelet to be patched, it is necessary to put new code in the 
application. Codelet functions trying to call the new function can only do so if the call is made indirectly 
by refering to a patch (jump) table held in the application's static memory (remember the codelet code 
can't be changed as it is held in immutable memory). 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 78 

 

  

At the time the codelet is built it needs to know what offset in the patch table to use for each function. 
This is fine if you have one codelet with patchable functions. However, when you have two or more such 
codelets, independently generated patch tables for each codelet are going to clash. In order to provide a 
unique set of offsets for a cluster of related codelets it is therefore necessary to pre-allocate the offsets 
and pass this list to each codelet build and the final application link. In SmartDeck, this external list is a 
simple text file and is passed to the link command using the -pt switch. More on this later. 

  

The other issue comes when you have two codelets that call each other. Because codelets are fully linked 
you cannot link one without the linker file (hzl) of the other, which can't be created because that codelet 
cannot be linked either for the same reason. i.e. there is a circular dependency. To break that 
dependency, the functions must be declared as __patchable and the external patch table used. Then then 
both rely on the external patch table to achieve the link. 

  

The Patch Table File 

This is a text file structured as follows, one line per codelet entry point. 

  

<Symbol_name> <codeletId - decimal> <patch table index> 

  

For example 

  

_codeletA_function1    22    0 

_codeletA_function2    22    1 

_codeletB_function1    23    2 

_codeletC_function1    24    3 

  

Each column is separated by white space (spaces or tab characters). The <patch table index> must be 
unique. Gaps in the sequence are allowed - the linker will automatically create a blank entry in the 
application's patch table. 

  

The patch table is passed to the linker for each codelet as shown in this example: 

 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 79 

 

 

The final application link also requires the patch table switch, as well as the linker (hzl) files for each 
codelet. 

 
 

Building the Patch Table File 

You can do this manually. Alternatively the SmartDeck application hls has been modified such that it can 
be used to extract the list of patchable entry points for a codelet. This could be useful if there are too 
many to type accurately by hand into the patch table file. 

 

To use hls for this, do a preliminary build of the codelets without using the -pt switch. Then, in one go, run 
hls on all the generated hzx files as shown in the example below… 

 

hls -pt codelet1.hzx codelet2.hzx codelet3.hzx > patch_table.txt 

 

At this stage, you can manually modify the table as necessary - for example if you are making use of 
existing codelets that can no longer be modified.  

 

Finally relink the codelets (after a "clean") with the -pt switch. 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 80 

 

Assembler User Guide 
 

The SmartDeck assembler converts assembly source code to relocatable object code written to object 
code files.  The linker takes these object code files and combines them to form an Application Load Unit 
(ALU) containing the final instructions for use on the smart card.  

Life is never simple, and software production for smart cards has complexities just like life itself. This 
introduction will skip a few details, both minor and major, which you’ll need to know about when trying 
out your smart card applications—thankfully, we can put these to one side for now, which is probably 
rather unlike real life.  

 

About this manual  

The conventions used in the manual are described in the "Installation and Getting Started" section.  

What we don’t tell you...  

This manual is a reference for the SmartDeck assembler.  What we don’t do in this manual is explain the 

architecture of the MULTOS virtual machine or how to go about constructing a smart card application. 

The format of an assembly statement  

Assembly language files are constructed from assembly language mnemonics and directives, collectively 
known as source statements. An assembly source module is a sequence of such source statements.  

 

A statement is a combination of mnemonics, operands, and comments the defines the object code to be 
created at assembly time.  Each line of source code contains a single statement.  

Assembler statements take the form:  

Syntax  

[label]  [operation]  [operands] [comment]  

Field Purpose 

 

label 

 
Labels the statement so that the statement can be accessed by 

name in other statements 

operation Defines the action of the statement 

operands Defines the data to be operated on by the statement 

comment Describes the statement without affecting assembly 

 

Table 23 Fields used in assembler statements 

All fields are optional, although the operand or label fields may be required if certain directives or 
instructions are used in the operation field.  

Label field  

The label field starts at the left of the line, with no preceding spaces.  A label name is a sequence of 
alphanumeric characters, starting with a letter.  You can also use the dollar sign ‘$’ and underline 
character ‘_’ in label names.  

A colon may be placed directly after the label, or it can be omitted.  If a colon is placed after a label, it 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 81 

 

defines that label to be the value of the location counter in the current section.  

Operation field  

The operation field contains either a machine instruction or an assembler directive. You must write these 
in either all upper-case or all lower-case— mixed case is not allowed.  

The operation field must not start at the left of the line; at least one space must precede it if there is no 
label field.  At least one space must separate the label field and the operation field.  

Operand field  

The contents of the operand depend upon the instruction or directive in the operation field.  Different 
instructions and directives have different operand field formats. Please refer to the specific section for 
details of the operand field.  

Comment field  

The comment field is optional, and contains information that is not essential to the assembler, but is 
useful for documentation.  The comment field must be separated from the previous fields by at least one 
space.  

 
 

Constants  

You can use constants to specify numbers or strings that are set at assembly time.  

Integer constants  

Integer constants represent integer values and can be represented in binary, octal, decimal, or 
hexadecimal.  You can specify the radix for the integer constant by adding a radix specified as a suffix to 
the number.  If no radix specifier is given the constant is decimal.  

Syntax  

decimal-digit digit... [B| O | Q | D | H]  

Radix Specifier 

Binary B 

Octal O or Q 

Decimal D 

Hexadecimal H 

 

Table 24 Integer constant radix suffixes 

Radix suffixes can be given either in lower-case or purchase letters. Hexadecimal constants must 
always start with a decimal digit (0 to 9).  You must do this otherwise the assembler will mistake the 
constant for a symbol —for example, 0FCH is interpreted as a hexadecimal constant but FCH is 
interpreted as a symbol.  

Examples  

224 ; 224 

224D ; 224  

17Q ; 15 

100H ; 256  

You can specify hexadecimal constants in two other formats which are popular with 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 82 

 

many assemblers:  

Syntax  

0x digit digit... 

$ digit digit...  

The 0x notation is exactly the same as the way hexadecimal constants are written in C, and the $ 
notation is common in many assemblers for Motorola parts.  

Example  

0xC0 ; 192 

$F ; 15  

String constants  

A string constant consists of one or more ASCII characters enclosed in single or double quotation marks.  

Syntax  

’character...’ 

"character..."  

You can specify non-printable characters in string constants using escape sequences.  An escape sequence 
is introduced by the backslash character ‘\’. The following escape sequences are supported:  

 

Escape Sequence Description 

\ooo Octal code of character where o is an octal digit 

\" Double quotation mark 

\\ Backslash 

\’ Single quotation mark 

\b Backspace, ASCII code 8 

\f Form feed, ASCII code 12 

\n New line (line feed), ASCII code 10 

\r Carriage return, ASCII code 13 

\t Tab, ASCII code 9 

\v Vertical tab, ASCII code 11 

\xhh Hexadecimal code of character where h is a hexadecimal digit 

 

Table 25 Escape sequence in strings 

Examples  

"This is a string constant" 

’A string constant with a new line at the end\n’  

Comments  

To help others better understand some particularly tricky piece of code, you can insert comments into the 
source program.  Comments are simply informational attachments and have no significance for the 
assembler.  

Comments come in two forms: single-line comments and multi-line comments.  

Single-line comments  

A single line comment is introduced either by single character ; or by the characters //.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 83 

 

Syntax  

// character...  

; character...  

The assembler ignores all characters from the comment introducer to the end of the line.  This type of 
comment is particularly good when you want to comment a single assembler line.  

Example  

LOADI dataPtr, 1 // fetch next byte from APDU 

INCN dataPtr ; increment data pointer  

Which style you choose is down to personal preference.  

Multi-line comments  

A multi-line comment resembles a standard C comment as it is introduced by the characters /* and is 
terminated by */.  

Syntax  

/* character... */  

Anything in between these delimiters is ignored by the assembler.  You can use this type of comment to place large 
amounts of commentary, such as copyright notices or functional descriptions, into your code.  

Example  

/* Elliptic curvecryptography library 

Copyright (c) 1999, 2000 Dyne-O-Mite Software,Inc. 

*/  

It’s quite acceptable to use this form to comment a single line, but using the single- line comment form is stylistically 
better.  

 

Include files  

You can include the contents of another file in your application using the INCLUDE directive.  

Syntax  

INCLUDE "filename" 

INCLUDE <filename>  

If the name of the file is contained in quotation marks, the assembler searches for the file on the user include path 
set by the -I command line option; if it’s not found on this path, the assembler continues by searching the system 
include path (set by the - J option).  

If the name of the file is contained in angle brackes, the assembler searches only the system include path set by the 
-J option.  

 

Registers  

The AAM register set is composed of seven address registers and two control registers, shown in Table 26  

Register Name Register Contents 

SB Static base, the base of the static data area 

ST Static top, the extent of the static data area 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 84 

 

DB Dynamic base, the base of the dynamic data area 

DT Dynamic top, the extent of the dynamic data area 

PB Public base, the base of the public data area 

PT Public top, the extent of the public data area 

LB Local base, the base of the active stack frame 

 
Table 26 Register names and uses 

Addressing Modes 

MEL addresses are broken into two classes: 

• tagged addresses, and 

• segmented addresses. 

 

A tagged address is formed by specifying a constant offset to one of the internal AAM registers at the assembler 
level and the assembler only deals with tagged addresses. The AAM converts the tagged address to a segmented 
address at run-time when it adds an offset to the register and forms a 16-bit segmented address. 
 

For assembler purposes, tagged addresses are further divided into two classes: 

• explicit tagged addresses, and 

• implicit tagged addresses. 

 

All tagged addresses must specify a register as a base, and yet doing so is cumbersome when programming because 
you need to remember which section a data item was defined in. 

In order to circumvent this problem, you can omit the register from the address and leave it for the linker to insert 
the correct register into the tagged address depending upon which segment the data item was defined in.  This 
makes it much less of a burden to write assembler code because the linker takes care of the housekeeping.  You can, 
of course, still specify a register when constructing a tagged address and the assembler and linker will honour your 
choice of register, even if it is the incorrect one.  

Explicit tagged addresses  

An explicit tagged address is written using the format  

Syntax  

register [ offset ]  

For example, SB[20] is a tagged address as is DT[-4]. Any register can be used to construct a tagged address.  

Implicit tagged addresses  

An implicit tagged address is written without using a register. The register is filled in by the linker when the symbol is 
defined.  
  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 85 

 

Labels, Variables and Sections 
 

This section explains how to define labels, variables, and other symbols that refer to data locations in sections.  The 
assembler keeps an independent location counter for each section in your application.  When you define data or 
code in a section, the location counter for that section is adjusted, and this adjustment does not affect the location 
counters of other sections.  When you define a label in a section, the current value of the location counter for that 
section is assigned to the symbol. You’ll be shown how to assign labels and define most types of variables. You’ll also 
be introduced to directives that control the location counter directly.  

 

Label names  

A label name is a sequence of alphanumeric characters, starting with a letter.  You can also use the dollar sign ‘$’ 
and underline character ‘_’ in label names.  

 

Symbolic constants or equates  

You can define a symbolic name for a constant using the EQU directive.  The EQU directive declares a symbol whose 
value is defined by an expression.  

Syntax  

symbol EQU expression  
symbol = expression  

The assembler evaluates the expression and assigns that value to the symbol.  

Example  

CR EQU 13  

This defines the symbol CR to be a symbolic name for the value 13. Now you can use the symbol CR in expressions 
rather than the constant. The expression need not be constant or even known at assembly time; it can be any value 
and may include complex operations involving external symbols.  

Example  

ADDRHI EQU (ADDR>>8) & 0FFH  

This defines the symbol ADDRHI to be equivalent to the value of ADDR shifted right 8 bits and then bitwise-anded 
with 255.  If ADDR is an external symbol defined in another module, then the expression involving ADDR cannot be 
resolved at assembly time as the value of ADDR isn’t known to the assembler. The value of ADDR is only known when 
linking and the linker will resolve any expression the assembler can’t.  

 

Using type specifiers  

Some statements need data type specifiers to define the size and type of an operand. Data type specifiers are fully 
described in ” Data Types and Expressions” , but for the moment the following will suffice:  

Type name Size in bytes Description 

BYTE 1 Unsigned 8-bit byte 

WORD 2 Unsigned 16-bit word 

LONG 4 Unsigned 32-bit word 

CHAR 1 8-bit character 

ADDR 2 16-bit address 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 86 

 

Table 27 Assembler built-in types  

 
 

Labels  

You use labels to give symbolic names to addresses of instructions or data. The most common form of label is a code 
label where code labels as operands of call, branch, and jump instructions to transfer program control to a new 
instruction.  Another common form of label is a data label which labels a data storage area.  

Syntax  

label [:] [directive | instruction]  

The label field starts at the left of the line, with no preceding spaces.  The colon after the label is optional, but if 
present the assembler immediately defines the label as a code or data label.  Some directives, such as EQU, require 
that you do not place a colon after the label.  

Example  

ExitPt: RET  

This defines ExitPt as a code label which labels the RET instruction. You can branch to the RET instruction by 
using the label ExitPt in an instruction: JMP ExitPt  

 

Defining and initialising data  

You can allocate and initialise memory for data using data definition directives.  There are a wide range of data 
definition directives covering a wide range of uses, and many of these have the same semantics.  

Defining simple data  

You can initialise data items which have simple types using a convenient set of directives.  

Syntax  

label [:] [DB | DW | DL | DD] initialiser [, initialiser]...  

The size and type of the variable is determined by the directive.  The directives used to define an object in this way 
are:  

Directive Meaning 

DB Define bytes 

DW Define words (2 bytes) 

DD DL Define long or double word (4 bytes) 

 

Table 28 Simple data allocation directives 

 

If the directive is labeled, the label is assigned the location counter of the current section before the data are placed 
in that section.  The label’s data type is set to be an array of the given type, the bounds of which are set by the 
number of elements defined.  

 

Example  

Power10  DW  1, 10, 100, 1000, 10000  

This defines the label POWER10 and allocates five initialised words with the given values. The type of POWER10 is set 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 87 

 

to WORD[5], an array of five words, as five values are listed.  

Defining string data  

You can define string data using the DB directive. When the assembler sees a string, it expands the string into a 
series of bytes and places those into the current section.  

Example  

BufOvfl  DB  13, 10, "WARNING: buffer overflow", 0  

This emits the bytes 13 and 10 into the current section, followed by the ASCII bytes comprising the string, and finally 
a trailing zero byte.  

 

Aligning data  

Data alignment is critical in many instances.  Defining exactly how your data are arranged in memory is usually a 
requirement of interfacing with the outside world using devices or communication areas shared between the 
application and operating system.  

You can align the current section’s location counter with the ALIGN directive. This directive takes a single operand 
which must be a type name.  

Syntax  

ALIGN type  

The data type given after the directive defines the alignment requirement; if this type has a size n, the location 
counter is adjusted to be divisible by n with no remainder.  

Example  

ALIGN LONG  

This aligns the location counter so that it lies on a 4-byte boundary as the type LONG has size 4. To align data to an n-
byte boundary you can use the following:  

ALIGN BYTE[n]  

 

Filling areas  

In many cases you’ll need to fill large areas of code or data areas with zeroes or some other value. The assembler 
provides the .SPACE and .FILL directives for this purpose.  

Filling with zeroes  

A particular example of this is reserving memory space for a large array.  Rather than using multiple data definition 
directives, you can use the .SPACE directive.  

Syntax  

[label] .SPACE n 

The .SPACE directive generates n bytes of zeroes into the current section and adjusts the location counter 

accordingly.  

Example  

.SPACE 10  

This reserves 10 bytes in the current section and sets them all to zero.  

Filling with a particular value  

You may find it convenient to use the .FILL directive to fill an area with a certain number of pre-defined bytes.  
.FILL takes two parameters, the number of bytes to generate and the byte to fill with.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 88 

 

 

Syntax  

[label] .FILL size, value  

The .FILL directive generates size bytes of value into the current section and adjusts the location counter 
accordingly.  

 

Example  

.FILL 5, ’ ’  

This generates five spaces into the current section.  

 

Using sections  

You can use sections to logically separate pieces of code or data. For instance, many processors need interrupt and 
reset vectors placed at specific addresses; using sections you can place data at these addresses.  Another use of 
sections is to separate volatile data from non-volatile data in an embedded system with dynamic RAM and battery-
backed static RAM.  

You select a section using the .SECT directive.  If the section name doesn’t exist, a new section is created.  

Syntax  

.SECT "section-name"  

By convention, section names start with a period character. The section name  

is not an assembler symbol and can’t be used in any expression. The assembler places all code and data into the 

selected section until another section is selected using .SECT.  

Example  

.SECT ".vectors" 

irqvec DW irq 

nmivec DW nmi 

rstvec DW reset  

This example shows you how to set up a section named .vectors and populate it with some address.  

Pre-defined sections  

The SmartDeck system uses a number of pre-defined sections for MULTOS data:  

 
Section name Description 

.text Code section 

.PB MULTOS public section 

.DB MULTOS dynamic section 

.SB MULTOS static section 

 

Table 29 Pre-defined sections 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 89 

 

Data Types and Expressions 
 

Unlike many assemblers, the SmartDeck assembler fully understands data types.  The most well-known and widely 
used assembler that uses data typing extensively is Microsoft’s MASM—and its many clones.  So, if you’ve used 
MASM before you should be pretty well at home with the concept of data types in an assembler and also with the 
SmartDeck implementation of data typing.  

 

If you haven’t used MASM before you may well wonder why data typing should ever be put into an assembler, given 
that many assembly programs are written without the help of data types at all.  But there are many good reasons to 
do so, even without the precedent set by Microsoft, and the two most valuable benefits are:  

 

• The ability to catch potential or real errors at assembly time rather than letting them through the assembler to go 
undetected until applications are deployed in the field.  

• Data typing is an additional and effective source of program documentation, describing the way data are grouped and 
represented. 

 

We don’t expect you to fully appreciate the usefulness of assembly-level data typing until you’ve used it in an 
application and had first-hand experience of both benefits above. Of course, it’s still possible to write (almost) 
typeless assembly code using the SmartDeck assembler if you should wish to do so, but effective use of data typing 
is a real programmer aid when writing code.  

 

Lastly, we should just mention one other important benefit that data typing brings and that is the interaction 
between properly-typed assembly code and the debugger.  If you correctly type your data, the debugger will present 
the values held in memory using a format based on the type of the object rather than as a string of hexadecimal 
bytes.  Having source-level debugging information displayed in a human-readable format is surely a way to improve 
productivity.  

 

Built-in types  

The SmartDeck assembler provides a number of built-in or pre-defined data types. These data types correspond to 
those you’d find in a high-level language such as C.  

Type name Size in bytes Description 

BYTE 1 Unsigned 8-bit byte 

WORD 2 Unsigned 16-bit word 

LONG 4 Unsigned 32-bit word 

CHAR 1 8-bit character 

ADDR 2 16-bit address 

 

Table 30 Assembler built-in types 

You can use these to allocate data storage; for instance the following allocates one word of data for the 
symbol count:  

 
count VAR BYTE  

The directive DF allocates one byte of space for count in the current section and sets count’s type to BYTE. 

Structure types  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 90 

 

Using the STRUC and FIELD directives you can define data items which are grouped together.  Such a group is called 
a structure and can be thought of as a structure in C.  

Structured types are bracketed between STRUC and ENDSTRUC and should contain only FIELD directives.  

Example  

From an unshameful British stance, we could declare a structure type called Amount which has two members, 
Pounds and Pence like this:  

 Amount STRUC 

 Pounds FIELD  LONG 

 Pence  FIELD  BYTE 

   ENDSTRUC 

 
The field Pounds is declared to be of type LONG and Pennies is of type BYTE (we can count lots of Pounds, and a 
small amount of loose change).  

Structured allocation and field access  

The most useful thing about structures, though, is that they act like any built-in data type, so you can allocate space 
for variables of structure type:  

Balance VAR Amount  

Here we’ve declared enough storage for the variable Balance to hold an Amount, and the assembler also knows 
that Balance is of type Amount. Because the assembler knows what type Balance is and how big an Amount is, 
you can load the contents of Balance onto the stack in a single instruction:  

LOAD Balance  

This loads three bytes onto the stack (an amount is one word plus one byte). What’s more, because the assembler 

tracks type information, you can specify which members of balance to operate on:  
LOAD Balance.Pence  

Here, we load a single byte onto the stack which is the Pence part of Balance. We could equally well 
have written:  

LOAD Balance.Pounds  

which loads the Pounds part of Balance.  

Nested structures  

Because user-defined structures are no different from the built-in types, you can declare fields within other 
structures to be of structure type.  Taking the example above a little further, you could define a type Account to 
have two members, Balance and ODLimit which correspond to an current account’s balance and overdraft limit:  

 Account STRUC 

Balance FIELD  Amount 

ODLimit FIELD  Amount 

  ENDSTRUC 

 

MyAccount DF  Account 

 
Having a variable MyAccount declared of type Account, you can access the Pounds field of MyAccount’s ODLimit 

member using the dotted field notation:  

LOAD MyAccount.ODLimit.Pounds  

Array types  

You can declare arrays of any predefined or user-defined type.  Arrays are used extensively in high-level languages, 
and therefore we decided they should be available in the SmartDeck assembler to make integration with C easier.  

An array type is constructed by specifying the number of array elements in brackets after 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 91 

 

the data type.  

Syntax  

type [ array-size ]  

This declares an array of array-size elements each of data type type. The array-size must be an absolute constant 
known at assembly time.  

Example  

The type  
BYTE[8]  

declares an array of eight bytes.  

Pointer types  

You can declare pointers to types just like you can in most high-level languages.  

Syntax  

type PTR 

This declares a pointer to the data type type.  

Example  

The type  
BYTE PTR  

declares a pointer to a byte.  The built-in type ADDR is identical to the type BYTE PTR.  

 

Combining data types  

Arrays, combined with structures, can make complex data structuring simple:  

 
BankAccount  STRUC 

HolderName  FIELD  CHAR[32] 

HolderAddr  FIELD  CHAR[32] 

Balance  FIELD  Amount 

ODLimit  FIELD  Amount 

ENDSTRUC 

Accessing array elements  

You can select individual elements from an array by specifying the index to be used in brackets:  
LOAD MyAccount.HolderName[0]  

The assembler defines arrays as zero-based, so the fragment above loads the first character of MyAccount’s 
HolderName. Because the assembler must know the address to load at assembly time, the expression within the 
square brackets must evaluate to a constant at assembly time.  For example, the following is invalid because Index 
isn’t an assembly-time constant:  

Index  DF  BYTE 

LOAD  MyAccount.HolderName[Index]  

However, if Index were defined symbolically, the assembler can compute the correct address to encode in the 
instruction at assembly time:  

Index EQU 20 LOAD MyAccount.HolderName[Index]  

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 92 

 

Byte and word extraction operators  

These operators allow you to extract bytes from values at assembly time.  They are HIGH, HBYTE, LOW, LBYTE, 
HWORD and LWORD. 

Examples 
 
HIGH  $FEDCBA98 ; evaluates to $BA 

LOW  $FEDCBA98 ; evaluates to $98 

HWORD  $FEDCBA98 ; evaluates to $FEDC 

LWORD  $FEDCBA98 ; evaluates to $BA98 

 

These can be combined to extract other bytes of values: 
 
HBYTE HWORD $FEDCBA98 ; evaluates to $FE 

LBYTE HWORD $FEDCBA98 ; evaluates to $DC 
 

Index operator  

The index operator indicates addition with a scale factor.  It is similar to the addition operator.  

Syntax  

expression1[expression2]  

expression1 can be any expression which has array type.  expression2 must be a constant expression.  The assembler 
multiplies expression2 by the size of the array element type and adds it to expression1.  

Example  

ARR VAR WORD[4] ; an array of four words  
W3 EQU ARR[3] ; set W4 to the address ARR+3*(SIZE WORD)    ; which is ARR+6 

Bit-wise operators  

Bit-wise operators perform logical operations on each bit of an expression. Don’t confuse these operators with 
processor instructions having the same names—these operators are used on expressions at assembly time or link 
time, not at run time.  

Operator Syntax Description 

NOT NOT expression Bit-wise complement 

~ ~ expression  

AND expression1  AND expression2 Bit-wise and 

& expression1  & expression2  

OR expression1 OR expression2 Bit-wise inclusive or 

| expression1 | expression2  

XOR expression1 XOR expression2 Bit-wise exclusive or 

^ expression1 ^ expression2  

 

Table 32 Logical operators  

Examples  
NOT 0FH   ; evaluates to FFFFFFF0 

0AAH AND 0F0H  ; evaluates to A0 

0AAH OR 0F0H  ; evaluates to FA 

0AAH XOR 0FFH  ; evaluates to 55  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 93 

 

 
 

Arithmetic operators  

Arithmetic operators combine two expressions and return a value depending upon the operation performed.  

Syntax  

 expression1 [operator] expression2 
 
Operator Description 

+ Add 

- Subtract 

* Multiply 

/ Divide 

SHL or << Shift expression1 left by expression2 bits 

SHR or >> Logically shift expression1 right by expression2 bits 

ASHR Arithmentically shift expression1 right by expression2 bits 

 
Table 33 Arithmetic operators 

 
Examples  

1 + 2  ; evaluates to 3 

-1 SHR 3 ; evaluates to 0x1FFFFFFF  

-1 ASHR 3  ; evaluates to -1  

 

Relational operators  

Relational operators compare two expressions and return a true value if the condition specified by the operator is 
satisfied.  The relational operators use the value one (1) to indicate that the condition is true and zero to indicate 
that it is false.  

Syntax  

expression1 [operator] expression2 
 

The following table shows the relational operators and their meanings.  

Operator Description 

EQ or == True is expressions are equal 

NE or != True if expressions are not equal 

LT or < True if expression1 is less than expression2 

LE or <= True if expression1 is less than or equal to expression2 

GT or > True if expression1 is greater than expression2 

GE or >= True if expression1 is greater than or equal to expression2 

 

Table 34 Relational operators 

 
Relational operators treat their operands as signed 32-bit numbers, so 0FFFFFFFFH GT 1 is false but 0FFFF GT 1 
is true.  

Examples  
1 EQ 2  ; evaluates to false (0) 

1 NE 2  ; evaluates to true (1) 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 94 

 

1 LT 2  ; evaluates to true 

1 GT 2  ; evaluates to false 

1 LE 2  ; evaluates to true 

1 GE 2  ; evaluates to false  

Logical operators  

Logical (Boolean) operators operate on expressions to deliver logical results.  

Syntax  

The following table shows the syntax of the logical operators and their meanings.  

Operator Syntax Description 

AND or && expression1 AND expression2 True if both expression1 and 

expression2 are true 

OR or || expression1 OR expression2 True if either expression1 or 

expression2 are true 

NOT or ! NOT expression True if expression is false, and 
false if expression is true 
 

Table 35 Logical operators 

Examples 

1 AND 0 ; evaluates to false (0)  

1 && 1 ; evaluates to true  (1) 

1 OR 2 ; evaluates to true 

NOT 1 ; evaluates to false  

 

Miscellaneous operators  

Retype operator  

The retype operator :: allows you to override the data type of an operand, providing the operand with a new 
type.  

Syntax  

expression :: type  

The expression is evaluated and given the type, replacing whatever type (if any) the expression had.  

Example  
wordvar DW 2  

LOAD wordvar::BYTE  

In this example, wordvar has the type WORD because it is defined using DW. The load, however, loads only a single 
byte because wordvar is retyped as a BYTE. Because retyping does not alter the value of the expression, it only 
alters its type, the load will read from the lowest address of wordvar.  

THIS operator  

You can refer to the current value of the location counter without using a label using the THIS operator.  

Syntax  
THIS  

The THIS operator returns an expression which denotes the location counter at the start of the assembler line. This 
is very important: the location counter returned by THIS does not change even if code is emitted.  

Example  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 95 

 

A typical use of THIS is to compute the size of a string or block of memory.  

MyString  DB  "Why would you count the number of characters" 

DB  "in a string when the assembler can do it?"  

MyStringLen EQU THIS-MyString  

DEFINED operator  

You can use the DEFINED operator to see whether a symbol is defined or not.  Typically, this is used with conditional 
directives to control whether a portion of a file is assembled or not.  

Syntax  

DEFINED symbol  

The DEFINED operator returns a Boolean result which is true of the symbol is define at that point in the file, and 
false otherwise.  Note that this operator only inquires whether the symbol is known to the assembler, not 

whether it has a known value: imported symbols are considered as defined even though the assembler 
does not know their value. DEFINED cannot be used to detect whether a macro has been defined.  
 
Example  
The following show how defined works in a number of cases.  

 .IMPORT X  

Y EQU 10  

B1 EQU DEFINED X ; true (1)  

B2 EQU DEFINED Y ; true (1)  

B3 EQU DEFINED Z ; false (0) -- not defined yet  

B4 EQU DEFINED U ; false (0) -- never defined  

Z EQU 100  

SIZEOF operator  

You can use the SIZEOF operator to retrieve the size of a variable or expression, if that variable or expression 
has a type.  

Syntax  

SIZEOF expression  

The SIZEOF operator returns an integer value which is the size of the type associated with the expression.  The 
assembler reports an error if the expression has no type.  

Example  

X  STATIC WORD[100]  

XSIZE  EQU  SIZEOF X ; 200, 100 two-byte elements 

X0SIZE EQU  SIZEOF X[0] ; 2, size of WORD  

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 96 

 

Block Structure 
 

The SmartDeck assembler provides you with features to help with constructing programs using something akin to 
the functions and block structure of a high-level language. For instance, you can create assembler functions which 
take parameters and return results, just like C functions.  The aim of this section is to guide you through the block 
structure features of the assembler so that you can apply them to your own programs.  

You shouldn’t have any problems understanding this section if you have used the MULTOS virtual machine before.  If 
you haven’t, we suggest that you become familiar with the MULTOS virtual machine first, and then tackle this 
section.  

 

Two types of block  

The SmartDeck assembler supports two block types, one roughly corresponding to a high-level function and the 
other to a block nested within another block or function. Not surprisingly, we’ll refer to a block corresponding to a 
high-level function as a function block, and a block nestling inside another block as a nested block.  

There are differences between the two types of block; the most notable differences are the way that the blocks are 
closed and that only function blocks can be given input and output parameters.  

 

Function blocks  

A function block is bracketed using BLOCK ... RETURN directives. The statements between these two directives 
constitute the body of the block and are treated as a unit.  You’ll appreciate the importance of function blocks when 
we come to construct applications from multiple object files or library routines.  

Function blocks always end with a RETURN directive.  Note that this is a directive and not an instruction: the 
assembler will automatically generate one of the four variants of MEL RET instruction for you depending upon the 
contents of the block body.  Because function blocks always end with RETURN, you should always call them using a 
CALL instruction.  

Simple function blocks  

To define a function block you bracket your statements with the BLOCK and RETURN directives. The BLOCK directive 
introduces the block, and the RETURN directive ends the block and generates an appropriate RET instruction.  For 
instance, say we wish to define a function ValAPDU to validate the INS and CLA bytes of an APDU.  ValAPDU should 
exit with an appropriate status if the bytes are not set correctly, and return to the caller for further processing if 
they are.  We can construct the block like this:  

ValAPDU  BLOCK 

CMPB   CLA, ISO_CLASS 

BEQ   ClaOK 

EXITSW  0x6E00 

ClaOK   CMPB   INS, READ_RECORD 

BEQ   InsOK 

EXITSW  0x6A81 

InsOK   RETURN 

 
We can ignore the instructions in the function body for the moment and concentrate on the fact that the block has 
been defined with a label ValAPDU. Now, this function can be called from an appropriate place in our mainline code 
using the CALL instruction:  

Main CALL ValAPDU  

At the label Main the function ValAPDU is called, ValAPDU validates the contents of the INS and CLA bytes, and if 
all is well control is returned to the instruction immediately after the call.  

Function blocks with input parameters  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 97 

 

The function ValAPDU does a useful job—unfortunately it’s rather rigid and we can’t use it to validate the INS and 
CLA bytes against anything other than the values ISO_CLASS and READ_RECORD. As such, ValAPDU is a specialised 
function; what would be more useful is if we could adapt it so that it’s generalised rather than specialised.  

 
Well, there’s good news. Rather like C functions, assembler-level functions declared using BLOCK can take 
parameters. We can make the ValAPDU function more general if we pass to it the values to check the INS and CLA 
bytes against.  

 
The mechanics of passing the INS and CLA bytes to check against is simple: push them onto the stack.  So, we’d use a 
boilerplate code such as:  

 
Main  PUSHB  ISO_CLASS  ; class to verify against 

PUSHB  READ_RECORD  ; instruction to verify against 

CALL  ValAPDU  ; do verification  

With that out the way all we need to worry about is accessing the parameters passed to the function from within 

the function body. Here’s the code fragment to do that:  
 

ValAPDU BLOCK 

class  IN  BYTE  

instr  IN  BYTE  

LOAD  class 

CMPN  CLA 

POPB 

BEQ  ClaOK 

EXITSW 0x6E00  

ClaOK   LOAD insn  

CMPN INS  

POPB  

BEQ InsOK  

EXITSW 0x6A81  

InsOK  RETURN  

Comparing this with the specialised version above, you’ll see that there are two new directives at the head of the 
block body and the way the comparisons are coded has changed.  

The IN directive names the parameters passed into the function and declares their type.  In this function there are 
two parameters, class and instr, both of type BYTE.  

In the function body the parameters class and instr are loaded onto the stack just like any other declared data item.  
The assembler provides the correct addressing mode for the LOAD instruction and takes care of calculating the offset to 
be used.  We check the class and instruction as before and always exit through the RETURN directive.  

The RETURN directive generates the appropriate MEL RET instruction to drop the two parameters from the stack 

when the function returns.  So, immediately following the call to ValAPDU, the two parameters that were 
pushed onto the stack have been consumed and the stack adjusted. As you can see, the function is now slightly 
longer and less compact than the original, but it is more flexible.  

 
Parameter types and declaration order  

The order in which you declare parameters matters!  You must declare the parameter you push onto the stack first as the 
first IN parameter, the second as the second IN parameter, and so on.  In the example above we pushed the expected 
class first, then the instruction; and in the function body we matched this order by declaring the parameter class first 
and then instr.  

Not only that, you must make sure that the data that you push at the call site matches the data types of the 
parameters.  Above, we pushed two bytes onto the stack before the call and this is matched with two byte 
parameter declarations in the function block.  

Functions that return values  

Up to now you’ve seen how to call a function both with and without parameters.  There is 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 98 

 

another avenue to explore and that’s how to return values from function blocks.  

 

Blocks, scope, and labels  

Whilst blocks give you the ability to define localised input and output parameters, they do not affect the way that 
labels are scoped.  Labels defined in blocks are not local to the scope of the block—this means it is possible to jump 
into and out of a block.  Doing so will probably lead to disaster and abnormal termination of your application 
because the locals within a block have not been removed or have not been created.  
  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 99 

 

Modules and Libraries 
 

When applications grow large they are usually broken into multiple smaller, manageable pieces, commonly called 
modules. Each piece is assembled separately and then the pieces are stitched together by the linker to produce the 
final application.  

When you partition a application into separate modules you will need to indicate how a symbol defined in one 
module is referenced in other modules. This section will show you how to declare symbols exported or imported so 
they can be used in more than one module.  

 

Assembler features  

The SmartDeck tools were designed to be flexible and let you to easily write space- efficient programs.  To that end, 
the assembler and linker combination provides a number of features which are not found in many compilation 
systems.  

Optimum-sized branches  

The linker automatically resizes branches to labels where the label is too far away to be reached by a branch 
instruction.  This is completely transparent to you as a programmer—when you use branch instructions, your linked 
program will always use the smallest possible branch instruction. This capability is deferred to the linker so that 
branches across compilation units are still optimised.  

Fragments: killing dead code and data  

The most important features of the linker are its ability to leave all unreferenced code and data out of the final 
application and to optimise the application as a whole, rather than on a per-function basis. The linker automatically 
discards all code and data fragments in a program that are not reachable from the start symbol.  

 

Exporting symbols  

Only symbols exported from a module can be used by other modules.  You can export symbols using the 
.EXPORT directive. This directive does nothing more than make the symbol visible to other modules: it does not 
reserve storage for it nor define its type.  

Syntax  

.EXPORT symbol [, symbol]...  

Not all symbols can be exported.  Variables, labels, function blocks, and numeric constants defined using EQU can 
be exported, but macro names and local stack-based variables cannot.  

The SmartDeck assembler publishes the symbol in the object file so that other modules can access it.  If you don’t 
export a symbol you can only use it in the source file it’s declared in.  

Using "::" is shorthand for defining and exporting labels  

As a convenience, a label can be defined and exported at the same time using double- colon notation.  

Example  

data_ptr::  

This declares the label data_ptr and exports it.  This is equivalent to: 

.EXPORT data_ptrdata_ptr:  

 

Importing symbols  

When you need to use symbols defined in other modules you must import them first. You 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 100 

 

import symbols using the .IMPORT directive.  

Syntax  

.IMPORT symbol [:: type] [, symbol [:: type]]...  

When importing a symbol you can also define its type.  This type information is used by the assembler whenever you 
reference the imported symbol and acts just like a symbol declared locally within the module.  If you don’t define a 
type for the imported variable, no type information is available to the assembler.  If you subsequently use such a 
variable where type information is required, the assembler will report an error.  

 

Example  
.IMPORT CLA::BYTE, La::WORD.IMPORT APDUData::BYTE[256].IMPORT _myVar  

The above imports CLA as a byte, La as a 16-bit word, APDUData as an array of 256 bytes, and _myVar without type 
information.  

 

Other terminology for import and export  

The terms import and export are not the only ones used to define symbol linkage between modules.  If you’ve 
programmed in other assembly languages or used other assemblers before you may be more familiar with the 
terminology public symbols and external symbols. You can use the following synonyms for .IMPORT and .EXPORT:  

Directive Synonyms 

.IMPORT .EXTERN, XREF 

.EXPORT .PUBLIC, XDEF 

 

Table 36 Import/export directive synonyms 

Using libraries  

When you know that you will need routines is a specific library you can use the INCLUDELIB directive to include 
them. Using INCLUDELIB means that you don’t need to specify the library name on the compiler driver 
command line when you link your program.  

Syntax  

INCLUDELIB "libname"  

libname is the name of the library you’d like the linker to include at link time. The above syntax is equivalent 
to the linker switch “-llibname.”  

Example  
INCLUDELIB "c”  

The above will cause the linker to search for and link the library libc.hza.  

 

The SmartDeck compilers use this ability to transparently ask the linker to include the necessary run-time support 
package for the given language. The following libraries are automatically included when using object files produced 
by one of the SmartDeck compilers.  

 

Library Language 

libc.hza C 

libb.hza BASIC 

libf.hza Forth 

Table 37 Language libraries linked automatically  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 101 

 

 

Macros, conditions and Loops 
 

Conditional assembly allows you to control which code gets assembled as part of your application, allowing you to 
produce variants.  Macros and loops automate repetetive tasks, such as constructing tables or duplicating code.  

 

Conditional assembly  

The structure of conditional assembly is much like that used by high-level language conditional constructs and the C 
pre-processor.  The syntax is:  

Syntax  

 IF expression  
true-conditional-body  

 ENDIF  

or  

 IF expression  
true-conditional-body  

 ELSE  

false-conditional-body  
 ENDIF  

The controlling expression must be an absolute assembly-time constant. When the expression is non-zero the true 
conditional arm is assembled; when the expression is zero the false conditional body, if any, is assembled.  

 

Nested conditionals  

You’ll find that using the IF and ENDIF directives on their own sometimes produces code which is difficult to follow.   

Example  

Consider the following which has nested IF directives: 

IF type == 1 

CALL type1 

ELSE 

IF type == 2 

CALL type2 

ELSE 

CALL type3 

ENDIF 

ENDIF  

 

The nested conditional can be replaced using the ELIF directive which acts like ELSE IF: 

IF type == 1 

CALL type1 

ELIF type == 2 

CALL type2 

ELSE 

CALL type3 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 102 

 

ENDIF  

The full formal syntax for using IF, ELIF, and ENDIF is:  

Syntax  

IF expression  
statements  

{ ELIF  
statements }  

     [ ELSE statements ]  

   ENDIF  

 

Typical uses for conditional assembly  

There are a few typical ways in which you can use the conditional assembly feature.  Mostly these involve turning on 
or off a piece of code according to some criterion, for example to assemble it with debugging enabled, or to 
assemble it for a specific variant of operating system.  

Omitting debugging code  

When you write an application you’ll invariable debug it by either using a debugger or by inserting special debugging 
code.  When the final application is deployed, you’ll want the application to be delivered with the debugging code 
removed—it takes up valuable resources and won’t be necessary in the final application. However, it’s always nice 
to keep the debugging code around just in case you should need to test the application again.  

Example  

Usual practice is to use a symbol, _DEBUG, as a flag to either include or exclude debugging code.  Now you can use 
IF with the DEFINED operator to conditionally assemble some parts of your application depending upon whether 
the _DEBUG symbol is defined or not. You can define _DEBUG on the compiler driver or assembler command line.  

IF DEFINED _DEBUG  

CALL DumpAppStateENDIF  

You can control whether the call to DumpAppState is made by defining the symbol _DEBUG. You can do this by 
defining the symbol in the assembler source file, or more flexible would be to define the symbol when assembling 
the file by using the compiler driver’s -D option.  

hcl -c -D_DEBUG app.asm  

To assemble the application for production you would leave the _DEBUG symbol undefined and assemble 
using:  

hcl -c app.asm  

Targeting specific environments  

Another common use of conditional assembly is to include or exclude code according to the intended target 
operating system. For example, an application may need to be deployed on both MULTOS 3 and MULTOS 4 cards, 
but should take advantage of some extended features in MULTOS 4.  

You can do this by defining a symbol and setting its value on the command line. Then, inside the application you can 
examine the value of this symbol to conditionally assemble a piece of code.  

Example  

A feature called transaction protection only exists in MULTOS version 4 and later; earlier versions of MULTOS do not 
support it.  An application may need to be targeted to versions of MULTOS both with and without transaction 
protection, for example during a transition from one MULTOS card to another.   
We can use the conditional assembly feature to target both MULTOS versions and take advantage of the transaction 
protection feature in version 4. The following code uses the value of __MULTOS_VERSION to conditionally assemble 
the calls to TransProtOn and TransProtOff which turn transaction protection on and off 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 103 

 

for MULTOS 4 and later:  

 
IF __MULTOS_VERSION >= 4  

CALL TransactionProtectionOn  

ENDIF  

INCN TransNum  

IF __MULTOS_VERSION >= 4  

CALL TransactionProtectionOff 

ENDIF  

You set the specific version of MULTOS to target by defining the __MULTOS_VERSION symbol on the command line.  
To assemble the code for MULTOS version 3 and therefore exclude transaction protection you would use:  

hcl -c -D__MULTOS_VERSION=3 trans.asm  

 
And to assemble for MULTOS version 4 and include transaction protection you would use:  

hcl -c -D__MULTOS_VERSION=4 trans.asm  

 

Macros  

The structure of a macro definition consists of a name, some optional arguments, the body of the macro and a 
termination keyword.  The syntax you use to define a macro is:  

Syntax  

name MACRO arg1, arg2, ... , argn 

macro-body  
ENDMACRO  

The name of the macro has the same requirements as a label name (in particular it must start in column one). The 
arguments are a comma-separated list of identifiers.  The body of the macro can have arbitrary assembly language 
text including other macro definitions and invocations, conditional and file inclusion directives.  

A macro is instantiated by using its name together with optional actual argument values.  A macro instantiation has 
to occur on its own line—it cannot be used within an expression or as an argument to an assembly code mnemonic 
or directive.  The syntax you use invoke a macro is  

Syntax  

name actual1, actual2, ... , actualn // comment  

 
When a macro is instantiated the macro body is inserted into the assembly text with the actual values replacing the 
arguments that were in the body of the macro definition.   

Example  

add  MACRO  N,a,b,c 

load  a, N 

load  b, N 

addn ,N 

pop N  

store c,N 

ENDMACRO 

  
longlong MACRO name, storage 

name storage BYTE[8 

ENDMACRO  

longlong A, STATIC 

longlong B, STATIC 

longlong C, STATIC  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 104 

 

....... 

add 8, A, B, C // C = A + B  

This example shows two macro definitions: add which defines a code sequence that will add two variables and 
store the result in a third variable; and longlong defines an 8-byte variable.  

Labels in macros  

When labels are used in macros they must be unique for each instantiation to avoid duplicate label definition errors.  
The assembler provides a label generation mechanism for situations where the label name isn’t significant and a 
mechanism for constructing specific label names.  

Label generation  
If a macro definition contains a jump to other instructions in the macro definition it is likely that the actual name of 
the label isn’t important.  To facilitate this a label of the form name? can be used  

Example  
incifeq MACRO a, N  

  pushw N 

  load a 

  cmpn ,2 

  bne NE? 

  incn a  

NE?  

ENDMACRO  

This example defines a macro incifeq that will increment a variable only if the variable has a defined value.  For 
example  

var1 STATIC WORD = 10  

incifeq var1, 10 

incifeq var1, 10 

incifeq var1, 10  

will increment var1 to be 11. If the label in the macro didn’t use a ’?’ then the assembler would have produced an 
error that the label was defined multiple times.  

Label construction  
There are situations when a macro invocation should result in the definition of a label.  In the simplest case the label 
can be passed as an argument to the macro, however there are cases when the label name should be constructed 
from other tokens. The macro definition facility provides two constructs to enable this:   

• tokens can be concatenated by putting ## between them;  

• the value of a constant label can be used by prefixing the label with $$.  
 
Example  
MELBINARYOP macro opcode  

  _mel##opcode##$$MELNUM BLOCK 

  op1? IN WORD 

  op2? IN WORD 

ccr OUT WORD  

loadi op1?, $$MELNUM 

loadi op2?, $$MELNUM 

opcode ,$$MELNUM 

pop $$MELNUM 

storei op1?,$$MELNUM  prim 0x5  store ccr,1 RETURN  

ENDMACRO  

 

This macro will define a function whose name is based on a macro argument and the value of the label MELNUM. 
For example the macro invocations 

MELNUM SET 3  

MELBINARYOP addn  

MELNUM SET MELNUM+1  

MELBINARYOP addn  

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 105 

 

will create the functions _meladdn3 and _meladdn4  

 
 

Loops  

If multiple definitions are required a loop structure can be used. This can be achieved either by a recursive macro 
definitions or by the use of the LOOP directive.  

Example  
MKMELARITH macro N   

IF N  MKMELARITH (N-1)  

  MELNUM SET MELNUM+1 

  MELBINARYOP addn 

ENDIF  

ENDMACRO 

MKMELARITH 10  

 

Will produce functions _meladdn10 ... _meladdn1. If the loop counter is a large number then a recursive 
macro may consume considerable machine resources.  To avoid this we recommend using the LOOP directive, 
which is an iterative rather than recursive solution.  

Syntax  

LOOP (expression) 

loop-body  

ENDLOOP  

The loop control expression must be a compile test constant. The loop body can contain any assembly text 
(including further loop constructs) except macro definitions (since it would result in multiple definitions of the same 
macro)  

Example  

x set 3 

LOOP (x) 

  pushb (x*y) 

  x set x-1 

ENDLOOP  

This will assemble the instructions pushb 3, pushb 2 and pushb 1. Note that the label naming capabilities (? $$ 
##) are not available within the body of a loop.  If the loop body is to declare labels then a recursive macro 
definition should be used or a combination of using macro invocation to define the labels and the loops to define 
the text of the label.  

 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 106 

 

Mnemonic Reference 
 

This section describes the MEL assembler mnemonics used by the SmartDeck tools. It is particularly useful if you 
need to write small MEL assembler routines to augment your application.  

This document does not describe the AAM architecture in detail; refer to the MULTOS Application Programmers 
Reference Manual for further details.  

 

Instructions  

This section contains a summary of the syntax of MEL instructions.  

ANDB 

ANDB addr, byte 

ADDB , byte  

Perform a bitwise and of byte into the byte at address addr. If addr is  
omitted, the source and destination is the byte on the top of the stack. This operation is a 
convenience and expands to the bit manipulate byte primitive when the operand is on the top of 
the stack and to a sequence of instructions when the operand is in memory.  

ADDB 

ADDB addr, byte 

ADDB , byte  

Add the 8-bit literal byte to the byte at address addr.  

ADDN 

ADDN addr, len 

ADDN , len  

Add the top of stack item to the block at address addr.  

ANDW 

ANDW addr, byte 

ADDW , byte  

Perform a bitwise and of word into the word at address addr. If addr is  
omitted, the source and destination is the word on the top of the stack. This operation is a 
convenience and expands to the bit manipulate word primitive when the operand is on the top of 
the stack and to a sequence of instructions when the operand is in memory.  

ADDW 

  ADDW addr, word  

  ADDW , word  

    Add the 16-bit literal word to the word at address addr.  

ANDN  

ANDN addr, len 

ANDN , len  

Perform a bit-wise and of the data at tagged address addr and the top of stack item {DT[-
len], len} and place the result at addr.  

BRANCH  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 107 

 

Bcond label  
BRA label 

Transfer control to label if the condition codes meet the condition cond. The condition cond 
is one of EQ, LT, LE, GT, GE, NE, or A.  

CALL  

Ccond label 

CALL label  

The first form calls the subroutine label if the condition codes meet the condition cond. The 
condition cond is one of EQ, LT, LE, GT, GE, NE, or A. If no condition is specified, A is assumed. 

CALL  

The second form is an indirect call and expects a code address on the top of stack and calls that 
address. 

CLEARN  

CLEARN addr,len  

CLEARN , len  

Clear the block at addr of length len bytes.  

CMPB  

CMPB addr,byte  

CMPB , byte  

Compare the 8-bit literal byte with the byte at address addr.  

CMPN  

CMPN addr,len  

CMPN , len  

Compare a byte-block of size len with another at address addr of the same size. 

CMPW  

CMPW addr,word  

CMPW , word  

Compare the 16-bit literal word to the word at address addr.  

DECN  

DECN addr,len  

DECN , len  

Decrement by one the block at addr of length len bytes.  

Example  
DECN , 2 ; decrement top of stack by 2 

DECN SB[0], 1 ; decrement the byte at SB[0] by 1 

DECN x ; decrement x. Size is derived from x’s type  

EXIT  
EXIT  

Return control to MULTOS.  

 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 108 

 

EXITLA 

EXITLA la1, la2 
EXITLA la 
 
Set La to la1:la2 or la as appropriate and return control to MULTOS. 
 
Example 
EXITLA $00, $12 
EXITLA $12 

 

Both the above instructions assemble to identical code. The second is the preferred form.  

 

EXITSW 

EXITSW sw1, sw2 
EXITSW sw12 
 
Set status word to sw1, sw2 or sw12 as appropriate and return control to MULTOS. 
 
Example 
EXITSW $6e, $00 

EXITSW $6e00 

Both the above instructions assemble to identical code. The second is the preferred form. 
 

EXITSWLA 

EXITSWLA sw1, sw2, la 
EXITSWLA sw12, la 
 
Set status word to sw1, sw2 or sw12 as appropriate, set La to la, and return control to MULTOS. 
 
Example 
EXITSWLA $6e, $00, 0 

EXITSWLA $6e00, 0 

Both the above instructions assemble to identical code. The second is the preferred form. 
 

EQVB  

EQVB , byte  

Perform a bitwise equivalence of byte and the byte on the top of the stack. This operation is a 

convenience and expands to the bit manipulate byte primitive.  

EQVW  

EQVW , word  

Perform a bitwise equivalence of word and the word on the top of the stack. This operation is a 
convenience and expands to the bit manipulate word primitive.  

 

INCN 

INCN addr, len 
INCN , len 
Increment by one the block at addr of length len bytes. 
 

INDEX 

INDEX addr, size 
 
Push the segmented address formed by multiplying the byte {DT[-1], 1] by size and adding it 
to addr. The multiplication is an unsigned 8-bit by 8-bit multiplication. 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 109 

 

 
JUMP 

Jcond label 
JMP label 
JMP , 

 

The first form transfers control to label if the condition codes meet thecondition cond. The 
condition cond is one of EQ, LT, LE, GT, GE, NE, or A.The second form is an indirect jump and 
expects a code address on the top of stack and transfers control to that address. 
 

LOAD 

LOAD addr, len 
LOAD , len 
Push onto the stack the block at addr of length len bytes. 

LOADA 

LOADA addr 
 
Push onto the stack the segmented address corresponding to the tagged address addr. 

 

LOADI 

LOADI addr, len 
LOADI , len 
 
Load indirect onto the stack. The word {addr, 2}contains the segment address of the block to 
push and len is the block length. 

 

NOTN 

NOTN addr, len 
NOTN , len 
 
Complement the block at addr of length len bytes. 

 

ORB 

ORB addr, byte 
ORB , byte 
 
Perform a bitwise or of byte into the byte at address addr. If addr is omitted, the source and 
destination is the byte on the top of the stack. This operation is a convenience and expands to 
the bit manipulate byte primitive when the operand is on the top of the stack and to a sequence 
of instructions when the operand is in memory. 

 
ORN 

ORN addr, len 
ORN , len 
Bit-wise inclusive-or the top of stack item with the block at address addr and place the result at 
addr. 
 

ORW 

ORW addr, byte 
ORW , byte 
Perform a bitwise or of word into the word at address addr. If addr is omitted, the source and 
destination is the word on the top of the stack.This operation is a convenience and expands to 
the bit manipulate word primitive when the operand is on the top of the stack and to a sequence 
of instructions when the operand is in memory. 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 110 

 

PRIM 

PRIM prim 
PRIM prim, b1 
PRIM prim, b1, b2 
PRIM prim, b1, b2, b3 
 
Call the primitive prim in set 0, 1, 2, or 3 with the given arguments. Refer to the MULTOS 
Application Programmers Reference Manual for further information. 
 

POPB 
POPB 

 

Pop one byte from the stack and discard it. 
 
 
 

POPW 
POPW 

 

Pop one word from the stack and discard it. 
 

POPN 

POPN len 
 
Pop len bytes from the stack and discard them. 
 

PUSHB 

PUSHB byte 
 
Push the 8-bit literal byte onto the stack. 
 

PUSHW 

PUSHW word 
 
Push the 16-bit literal word onto the stack. 

 
PUSHZ 

PUSHZ len 
 
Push a block of len zeroes onto the stack. 
 

RET 

RET input-len, output-len 
 
Return output-len bytes on the stack as the result of the subroutine call and deallocate input-len 
bytes from the stack on return. 
 

SETB 

SETB addr, byte 
SETB , byte 
 
Set the byte at address addr to the 8-bit literal byte. 
 

SETLA 

SETLA la1, la2 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 111 

 

SETLA la 
 
Set La to la1:la2 or la as appropriate. 
 
Example 
SETLA $00, $12 

SETLA $12 

Both the above instructions assemble to identical code, but the second is the preferred form. 
 

SETSW 

SETSW sw1, sw2 
SETSW sw12 
 
Set status word to sw1, sw2 or sw12 as appropriate. 
 
Example 
SETSW $6e, $00 

SETSW $6e00 

Both the above instructions assemble to identical code. The first is allowed for MDS 
compatibility, but the second is the preferred form. 
 

SETSWLA 

SETSWLA sw1, sw2, la 
SETSWLA sw12, la 
 
Set status word to sw1, sw2 or sw12 as appropriate, set La to la. 
 
Example 
SETSWLA $6e, $00, 0 

SETSWLA $6e00, 0 

 

Both the above instructions assemble to identical code, but the second is the preferred form. 
 
SETW 

SETW addr, word 
SETW , word 
Set the word at address addr to the 16-bit literal word. 
 

STORE 

STORE addr, len 
STORE , len 
 
Store the top of stack to the block at addr of length len bytes and pop len bytes from the stack. 
 

STOREI 

STOREI addr, len 
STOREI , len 
 
Store indirect from the stack. The word at {addr, 2} contains the segment address of the block 
to store the top of stack in and len is the block length. Once stored, len bytes are popped from 
the stack. 
 

SUBB 

SUBB addr, byte 
SUBB , byte 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 112 

 

Subtract the 8-bit literal byte from the byte at address addr 
 
SUBN 

SUBNN addr, len 
SUBN , len 
 
Subtract the top of stack item from the block at address addr. 
 

SUBW 

SUBW addr, word 
SUBW , word 
 
Subtract the 16-bit literal word from the word at address addr. 
 

SYSTEM 

SYSTEM op 
SYSTEM op,w1 
SYSTEM op,w1, w3 
 
Perform the given system action. Please refer to the MULTOS Application Programmers 
Reference Manual for further information. 
 

TESTN 

CLEARN addr, len 
CLEARN , len 
 
Test the block at addr of length len bytes against zero. 

 
XORB 

XORB addr, byte 
XORB , byte 
 
Perform a bitwise exclusiv -or of byte into the byte at address addr. If addr is omitted, the source 
and destination is the byte on the top of the stack.This operation is a convenience and expands 
to the bit manipulate byte primitive when the operand is on the top of the stack and to a 
sequence of instructions when the operand is in memory. 
 

XORN 

XORN addr, len 
XORN , len 
 
Exclusive or the top of stack item into the block at address addr. 
 

XORW 

XORW addr, byte 
XORW , byte 
 
Perform a bitwise exclusive or of word into the word at address addr. If addr is omitted, the 
source and destination is the word on the top of the stack. This operation is a convenience and 
expands to the bit manipulate word primitive when the operand is on the top of the stack and to 
a sequence of instructions when the operand is in memory. 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 113 

 

C User Guide 
 

SmartDeck C is a faithful implementation of the ANSI and ISO standards for the programming language C. This 
manual describes the C language as implemented by the SmartDeck C compiler.   

Because smart cards are small, memory-limited devices, we have to make a few concessions.  For instance, the ANSI 
C input/output library is much too large for a smart card environment, so this implementation of C simple does not 
provide it.  

 

Preprocessor  

The SmartDeck C preprocessor provides a number of useful facilities which extend the underlying compiler.  For 
instance, the preprocessor is responsible for finding header files in #include directives and for expanding the 
macros set using #define.  

In many implementations the C preprocessor is a separate program from the C compiler.  However, in SmartDeck C 
the preprocessor is integrated into the C compiler so that compilations are faster.  

 

Data types  

This section defines the data type format used by the SmartDeck C compiler.  

Byte order  

All data items are held in the native big-endian byte order of the MULTOS AAM.  

Plain characters  

The plain character type is unsigned by default.  

Floating-point types  

The floating-point types float and double are not supported.  

Type sizes  

Data type Size in bytes Alignment in bytes 

char 1 1 

unsigned char 1 1 

int 2 1 

unsigned int 2 1 

short 2 1 

unsigned short 2 1 

long 4 1 

unsigned long 4 1 

long long 8 1 

unsigned long long 8 1 

float not supported not supported 

double not supported not supported 

type * (pointer) 2 1 

enum (enumeration) 

 

2 1 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 114 

 

Table 38 Data type sizes 

 

SmartDeck C and the MULTOS environment  

The SmartDeck C compiler integrates well with MULTOS, but there are a few things that you should know when 
using the C compiler on MULTOS.  

Differences between MULTOS implementations  

Some features of MULTOS are designated optional which means that a MULTOS implementation may or may not 
support a particular feature. Testing your code on the card you are deploying onto, therefore, is vital because the 
SmartDeck MULTOS simulator may support optional primitives that the card does not..  

The features that a card supports are described in the MULTOS Implementation Report document which is available 
from the MAOSCO web site. You must register as an application developer to gain access to this document and 
other technical resources on the MULTOS web site.  

Session data and stack sizes  

The size of dynamic data varies between MULTOS implementations, so you should check that your application works 
on the card that you wish to deploy onto. To check the amount of session and dynamic data available on a card, 
consult the MULTOS Implementation Report which is available from the MULTOS website.  

Optional support for MULTOS N and V flags  

The N and V flags of the MULTOS condition code register are designated as optional flags.  The SmartDeck compiler 
generates code that does not rely on the MULTOS card supporting signed arithmetic and as such does not use the N 
and V flags. All library routines are written so that they will execute correctly on cards which do not support signed 
arithmetic.  

You can safely deploy your code on any card whether it supports signed arithmetic or not, fully confident that it will 
work correctly.  

Optional MULTOS Primitives  

Some MULTOS primitives are designated optional, such as certain crytographic primitives and transaction 
protection. It is impossible for the compiler to check that the primitives you use are available on the card you deploy 
onto.  If you use a primitive that is not supported by the card, your application will abend.  

Atomicity and data item protection  

You cannot rely on the code generator of the compiler to write atomically to a variable.   

Example  

As an example, consider the following program fragment:  
static long var; 

void inc_var(void 

{  

var += 2; 

}  

The compiler uses two instructions to increment the variable:  

INCN SB[var], 4 

INCN SB[var], 4  

 

If you want to use atomic writes and data item protection you should always check the code generated by the 
compiler for your critical routines.  Rather than using data item protection, you should 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 115 

 

consider using transaction protection which is easier to use than data item protection in high-level languages such as 
C.  

User flags  

The compiler and runtime system do not use the four flags in the condition code register set aside for the 
application to use. You may use these flags in assembler without having them changed by compiler code or the 
runtime syhstem.  

 

Selecting where data are stored  

The compiler currently supports four pragmas for data placement,   
#pragma melstatic 

#pragma melperso 

#pragma melpublic 

#pragma melsession  

These directives control where subsequent data definitions are generated.  For instance, to place an integer x into 
the public section you would use: 

#pragma melpublic 

int x;  

 

The pragma remains in effect until another section pragma is seen.  By default all global data are placed into the 
MULTOS static section. It is not necessary to use these pragmas in header files when declaring external variables.  
For example the following is enough to make my_session_data available to other compilation units by using a 
header file:  
 

#ifndef session_H 

#define session_H 

/* Session data * 

extern int my_session_data;  

#endif  

 

One compilation unit must define my_session_data, and this is the place where the section pragma is used:  
#include ”session.h” 

#pragma melsession 

int my_session_data;  

 

It’s wise to switch back to the static segment afterwards so that further definitions don’t go into the session data 
segment by accident.  For example, the above is better written:  

#include ”session.h”  

#pragma melsession 

int my_static_data; 

#pragma melstatic  

 
#pragma melstatic  

This pragma instructs the compiler to generate all further data into the “.SB” section, which is where MULTOS static 
data are held.  

#pragma melperso  

This pragma instructs the compiler to generate all following data into the beginning of the“.SB” section. Only one of 
these directives should be used in an application. It allows data that is to be personalised to be placed in a known 
location that will not change between versions of the application. The command hls –perso 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 116 

 

<hzxfile> outputs the names and locations of data items in this section. 

 
#pragma melpublic  

This pragma instructs the compiler to generate all further data definitions into the “.PB” section, which is where 
MULTOS public data are held.  

#pragma melsession  

This pragma instructs the compiler to generate all further data definitions into the “.DB” section, which is where 
MULTOS session data are held.  

 

Bytecode Substitution for Function Calls 

The ‘C’ compiler and linker support a mechanism whereby a function can be implemented by substituting the CALL 
instruction for a set of MEL instructions defined statically in a BYTE array. This makes the repeated use of small 
functions much more efficient as no actual function call is made. It is similar to using a #define macro but is cleaner 
and makes full use of the Eclipse IDEs type checking functionality. 

 

Function prototypes should be declared as normal. The compiler will manage the pushing of parameters and the 
popping and setting of return values. The bytecode for the function must be defined as in the following examples 
from C-API V2. 

 

#define SET0PRIM 0x28 

#define SET1PRIM 0x29 

#define SET2PRIM 0x2A 

#define PARAM_MARKER 0xFF 

 

#define DO_AND 0x83 

#define ZFLAG 0x01 

 

#define ZFLAG_SET SET0PRIM,PRIM_LOAD_CCR,SET2PRIM,__PRIM_BIT_MANIPULATE_BYTE,DO_AND,ZFLAG 

 

// Prototype 

BOOL multosBCDtoBIN (BYTE *sourceAddr, BYTE *destAddr, BYTE sourceLen, BYTE destLen); 

BOOL multosCardBlock (const BYTE MSB_StartAddress_MAC, const BYTE LSB_StartAddress_MAC); 

 

#pragma melbytecode 

BYTE _bytecode_multosBCDtoBIN[] = {SET1PRIM, __PRIM_CONVERT_BCD, 0x00, ZFLAG_SET }; 

BYTE _bytecode_multosCardBlock[] = { SET2PRIM, __PRIM_CARD_BLOCK, PARAM_MARKER, PARAM_MARKER, 

ZFLAG_SET}; 

 

If the first instruction in the array is a primitive call and that primitive has fixed parameters, it is possible to set those 
values (still at compile time) but using single BYTE parameters that look like they are being passed via the stack. 
These are the parameters shown as const in the examples above. Their value gets put into the parameter 
placeholders marked by a 0xFF value (PARAM_MARKER in the example above). 

 

 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 117 

 

Assembler inserts  

You can place assembler code directly into the output of a function using the __push, __pop, and __code 
statements. SmartDeck software provides efficient access to MULTOS services through the use of inline assembly 
code.  The statements __push(), __code() and __pop() enable C expressions to be used in MEL instructions and 
MEL instructions to be embedded within a C program. When using inline assembly code it is vitally important to 
keep the stack balanced: don’t take too much data off the stack, and don’t leave data on the stack after an 
assembler insert.  
 
Pushing values onto the stack  

The __push statement takes a C expression as an argument and pushes the result of that expression onto the MEL 
execution stack.  

Syntax  

__push(expression, expression...);  

 
Example  

int x = 5;__push(3, x);__push(&x);  

This generates:  
pushw 3load x, 2loada x  

which loads the literal word 3, the integer value of x, and the address of x onto the stack.  

Inserting instructions  

You can place a specific MEL instruction into a program using the __code statement.  

Syntax  

__code(instruction [, operand1 [, operand2[, operand3]]]);  

Each instruction that is supported is defined in the file <melasm.h>. The following instructions can be used with 
__code: 

• LOAD, STORE, LOADI, STOREI, LOADA, INDEX  

• SETB, CMPB, ADDB, SUBB  

• SETW, CMPW, ADDW, SUBW  

• CLEARN, TESTN, INCN, DECN, NOTN  

• CMPN, ADDN, SUBN, ANDN, ORN, XORN  

• SYSTEM, PRIM, POPB, POPW, PUSHB, PUSHW, PUSHZ  

 

The following instructions cannot be used with __code because they affect the code generation strategy of the 
compiler and the optimizer:  

• CALL, RET, BRANCH, JUMP  

You can include addresses and sizes in instructions.  

Example  
__code(ADDN, 4) 

__code(ADDN, &x, 4);  

This generates:  
addn , 4 

addn x, 4  

Note that the address given must be a directly addressable location, that is the address of a local variable, a 
parameter, or a global.   



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 118 

 

Storing values to memory  

The __pop statement must be given an expression that evaluates to an address and stores the number of bytes 
corresponding to the size of the expression. 

 

Syntax  

__pop(expression, expression...);  

Example  
struct 

{ 

  int f1; 

  int f2; 

} x;  

__pop(&x)  

This generates  
store x,4  

which will store four bytes from the stack into the address denoted by x.  

 

Assembler Interfacing  

Using SmartDeck it’s possible to write mixed-language programs as all SmartDeck compilers and assemblers share 
an identical object and debugging format.  SmartDeck has been designed to make working with multiple languages 
as simple as possible— but as with any multi-language program, its going to take a little effort from you, the user, to 
make everything run smoothly.  

 

The SmartDeck C compiler provides a substantial library in order to interface with MULTOS, but there may be times 
when you will need to interface C with assembler code—for instance, because you have legacy code already written 
in assembler, or you need to code in assembler because there are some things which can’t be done using a high-
level language.  For this you will need to know the conventions which the C compiler uses to name variables, how 
parameters are passed on the stack, and how results are returned to name but a few.  

 

In the following sections we’ll examine how the SmartDeck C compiler can work with assembly code routines. You’ll 
also find multi-language examples in the software distributed to you.  

 

Naming conventions  

SmartDeck C prefixes all C names with an underscore at the assembler level. Thus, variable names do not clash with 
type names or assembler mnemonics. The C compiler translates the declaration  

int myVar = 1;  

 

into the following code:  

_myVar: DW 1  

 

This convention is used for all globally scoped variables and functions.  Locally scoped automatic variables and 
parameters are not given names in assembler, only addresses relative to the frame pointer.  

 
 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 119 

 

Calling conventions  

You should find the calling conventions for the SmartDeck compiler quite natural, especially given the architecture 

of the MULTOS virtual machine. In the following sections you’ll see the rules that SmartDeck uses to pass 

parameters and to return results.  
 
How parameters are passed  

Parameters are passed using the standard convention of C compilers: reverse order, last parameter pushed first. As 

an example, consider the following function declaration:  
void fn(int x, int y,int z);  

When calling this function, the caller pushes the value for z first, y second, and x last, so calling 

  fn(1, 2, 3) 

 
generates:  

PUSHW 3  

PUSHW 2  

PUSHW 1  

CALL _fn  

Parameters are pushed onto the stack using a caller-widening scheme, that is the caller widens or narrows an actual 
parameter to the appropriate size for the formal parameter defined in the function prototype.  

Example  
void fn(int x); 

long a;  

void main(void) 

{ 

  fn(a); 

}  

Here, the caller narrows the 32-bit value of a to the size expected by the caller, namely 16 bits:  
LOAD _a, 4 

STORE , 2 

CALL _fn  

Naturally, the caller must also extend any value which is too narrow:  
void fn(int x); 

unsigned char a;  

void main(void 

{ 

  fn(a); 

}  

Here, the caller extends the 8-bit value of a to the size expected by the caller, namely 16 bits:  
PUSHB 0  

LOAD _a, 1 

CALL _fn  

Cleaning the stack on return  

It is the called function’s responsibility to clean the stack when it returns.  For fully prototyped functions this is 
possible by encoding the parameter area’s size in bytes in the RET instruction.  

How values are returned  

Values are returned to the caller on the stack according to the function’s type declared in the prototype. For 
example, if a function is declared to return a char, one byte must be returned by the caller to the callee rather than 
promoting the character to an int.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 120 

 

 

Using assembler directives for interfacing  

In the following sections we will put into practice the conventions outlined above by showing how to interface C 
with assembler using the appropriate directives.  As SmartDeck provides the IN, OUT, and STACK directives, 
interfacing C to assembler is considerably simplified.  

Translating a simple prototype  

Translating the C function prototype which takes a single parameter to a set of assembler directives is very simple.  
Consider the following simple prototype:  

int add1(int x);  

We will write an implementation of add1 in assembler which adds one to the parameter x and returns it as the 
function result.  The SmartDeck C compiler represents an int in a 16-bit word, and we translate the above 
prototype to:  

_add1 BLOCK  

x IN WORD  

result OUT WORD  

Note that the function return value is named, in this case result. When you want to return a value from the 
function, simply assign it to result and return; the assembler takes care of generating the correct set of 
instructions to do this. So, the body of add1 is coded:  
  LOAD x 

  ADDW , 1 

  STORE result  

The assembler derives the correct instruction length information for each instruction from the declarations we made 
earlier.  If we needed to be explicit we could have used  

  LOAD x, 2 

  ADDW , 1 

  STORE result, 2  

To return to the caller, you use RETURN directive which emits the correct code to clean up the stack and return to 
the caller:  

  LOAD x  

  ADDW , 1 

  STORE result  

  RETURN  

So, in full the function add1 is:  

_add1  BLOCK 

x  IN  WORD 

result OUT  WORD 

LOAD x 

ADDW , 1 

STORE result 

RETURN 

 
Translating a prototype with more than one parameter  

When translating a prototype with more than one parameter you must remember that the SmartDeck compiler 
pushes parameters in reverse order. As such, if you have a function which takes parameters x and then y, you must 
declare y first in the assembler block and then x.  

Example  

Consider translating  
int max3(int x, int y, int z);  

which is supposed to return the maximum value of its three parameters.  You must construct the assembler 
declaration which correctly interfaces with the SmartDeck C code as follows:  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 121 

 

  _max3 BLOCK  
 z IN WORD  

 y IN WORD 

 x IN WORD 

 result OUT WORD  

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 122 

 

C Library Reference 
 

This section describes the functions available from the original C library of SmartDeck. Wherever possible the C-API 
as defined in multos.h should be used in preference as it provides access to all the latest features and make use of 
the most efficient primitives. The original library is still included to support backwards compatibility with older 
applications. 

 

The library provides:  

 

• multi-precision unsigned arithmetic in <multosarith.h>  

• access to the CCR register in <multosccr.h>  

• cryptographic primitives in <multoscrypto.h>  

• controlling communications with the IFD in <multoscomms.h> 

• other MAOS services in <multosmisc.h>  

• a simulator-only printf capability in <stdio.h>  

• non-local jump support in <setjmp.h>  

• memory functions in <string.h>  

• heap management functions in <stdlib.h> and <heap.h>  

• DES and RSA encryption in <DES.h> and <RSA.h>  

• standard C definitions in <stddef.h> and <limits.h>  

 

Using the C library  

Conventions  

The C library contains a number of macros, functions, and variables.  In general, we use the following conventions:  

• Identifiers which are completely upper-case or have initial characters which are upper-case are macros.  

• Identifiers which are in lower-case are true functions. However, there are a number of important exceptions.  

Well-known data items such as the INS and CLA bytes of an APDU keep their ISO/EMV names and are 
variables whose names are all capitals (in this case INS and CLA).  
 

Library implementation  

Many of the routines in the library are implemented as macros that generate inline code. We have taken this 
approach because supporting many MULTOS primitives is impossible using a general-purpose assembler subroutine 
where the size of some data object is known only at run time—for MULTOS routines, the size of the object must be 
known at compile time and encoded directly into the instruction. See the header files for a description of each 
function / macro. 

 

Cryptographic functions  

Note: Please use the C-API as defined by multos.h for new applications. 

The header file <multoscrypto.h> contains interfaces to the MULTOS cryptography functions.  These include DES 
encipherment and decipherment, signature functions, modular multiplication for RSA, SHA-1, and asymmetric hash 
algorithms.  

 

APDU control  

Note: Please use the C-API as defined by multos.h for new applications. 

The header file <multoscomms.h> contains variables and macros which allow you to 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 123 

 

retrieve C-APDU parameters and data and set R-APDU parameters and data.  

 

Arithmetic functions  

Note: Please use the C-API as defined by multos.h for new applications. 

The header file <multosarith.h> contains macros which provide multi- 

precision arithmetic from C. The first parameter to all macros is the size of the block (N) which must be a 

compile- time constant.  

Binary operations  

For binary operations two forms of macro are supported:  

• one which will update a variable as a result of the operation, and 

• one which will store the result into another variable.  

Examples 
unsigned char x[1] = { 3 }; 

unsigned char y[1] = { 4 }; 

ASSIGN_ADDN(1, x, y); 

  

This will add y to x which results in x[0] being set to 7. 

unsigned char x[1] = { 3 }; 

unsigned char y[1] = { 4 }; 

unsigned char z[1]; 

ADDN(1, z, x, y);  

 

This will add x to y and put the result in z.  

Unary operations  

For unary operations the variable argument will be updated.  

Example  
  CLEARN(1, z)  

will set z to zero. The block parameters to the macros will always be cast to be an N-byte array of 

unsigned characters.  

Manipulating the CCR  

Note: Please use the C-API as defined by multos.h for new applications. 

The header file <multosccr.h> contains macros LoadCCR and StoreCCR to get and set the MULTOS 
condition code register (CCR).  

 

MULTOS operating system functions  

Note: Please use the C-API as defined by multos.h for new applications. 

The header file <multomisc.h> contains macros that provide access to the MULTOS operating system 
functions (MEL primitives) from C.  

 

DES library functions  

Note: Please use the C-API as defined by multos.h for new applications. 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 124 

 

Various flavours of DES enciphering are supported in the library <des.h>. These include both ECB and CBC 
encryption modes, single key DES and 2 or 3 key triple DES.  The triple DES encryption uses encrypt-
decrypt-encrypt mode. The triple key CBC encryption uses Outer-CBC mode.  

 

These functions operate on arbitrary sized messages and have variants that  support no padding or user 
defined padding schemes to be specified. User defined padding is accomplished by supplying a function 
pointer that is called by the enciphering function. A pad function takes the number of padding bytes 
required and a pointer to the buffer and should pad that buffer appropriately.  

 
typedef void (*padfntype)(unsigned numPadBytes,unsigned char *padBuffer);  

The converse operation is to determine the number of padding bytes when the message is deciphered. 
An unpad function is passed a pointer to the last 8 byte block of the message and is expected to return 
the number of padding bytes in the block.  

typedef unsigned(*unpadfntype)(unsigned char *padBuffer);  

 
On decipher functions the padding bytes are not copied.  

RSA library functions  

Note: Please use the C-API as defined by multos.h for new applications. 

The RSA library <RSA.h> defines structures for RSA public and private keys and supports functions that 
encipher and decipher using these keys. Before including the rsa header file the macros MODLEN and 
EXPLEN must be defined. For example  

#define MODLEN 128  

#define EXPLEN 2  

#include <rsa.h>  

 

will set the modulus length to be 128 bytes and the exponent length to be 2 bytes. The library requires 
that the RSA private key is in CRT form as defined by the following structure.  

typedef struct 

{ 

unsigned modlenInBytes; 

unsigned char dp[MODLEN/2]; 

unsigned char dq[MODLEN/2]; 

unsigned char p[MODLEN/2]; 

unsigned char q[MODLEN/2];unsigned char u[MODLEN/2]; 

} RSAPrivateCRTKey;  

 

The RSA public key is defined with the following structure  
typedef struct 

{ 

unsigned modlenInBytes; 

unsigned explenInBytes; 

unsigned char m[MODLEN]; 

unsigned char e[EXPLEN]; 

} RSAPublicKey;  

These structures can be used to define constant keys for example  

RSAPublicKey publicKey = 

{ 

128, // modlenInBytes 

2, // explenInBytes 

{ // m[128] 

0xda, 0x99, 0x7d, 0x0a, 0x44, 0xd5, 0x56, .... 

...., 0x75, 0x95, 0x92, 0x6a, 0x6a, 0x37, 0x1d 

}, 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 125 

 

{ // e[2] 

0xc3, 0x53 

} 

   };  

Note that the sizes of the modulus and exponent may be restricted on the MULTOS implementation you 
are using.  

Standard C library functions  

A limited number of standard C library functions are supported in the library of SmartDeck C. Consult a C 
programming manual for details on how to use these functions that are detailed below.  

<ctype.h>  

This file contains implementation defined constants.  

<heap.h> 

This is not a standard C library; it is required to set up the heap used to implement the 
functions in<stdlib.h> 

Prototype 

void heap_init(size_t size, void *ptr); 

unsigned heap_used(void); 

 

Description 

The heap_init function takes a block of memory of size bytes pointed 

to by ptr. This block of memory is used to implement the <stdlib.h> 

functions. The heap_used function returns the number of bytes of memory 

that have been used. 

 

<limits.h> 

This file contains functions for character testing. 

 

<setjmp.h> 

The standard functions setjmp and longjmp are supported in this library. 

 

<stdio.h> 

The standard function printf is supported by this library when running on the 
SmartDeck simulator. Use #ifdef statements to exclude from card builds. 

 
<stdlib.h> 

The standard heap functions calloc, malloc, realloc and free are supported 
by this library together with the math functions abs, labs, div and ldiv. 

 
<string.h> 

The standard string and memory functions are supported in this library. The functions 
strtok and strerror are not supported. 

  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 126 

 

C Compiler Diagnostics 
 

Pre-processor warning messages 

These warning messages come from the pre-processing pass of the compiler. Although the compiler and pre-
processor are integrated into the same executable, it is worth distinguishing the pre-processor warning messages 
from those generated by the compiler proper. 

 

bad digit 'digit' in number 

When evaluating a pre-processor expression the pre-processor encountered a malformed octal, 
decimal, or hexadecimal number.  
 

bad token 'token' produced by ## 
A bad pre-processing token has been produced when using the token pasting operator ##.  This 
error is extremely unlikely to occur in your code.  

character constant taken as not signed 

Characters with ASCII codes greater than 127 are treated as unsigned numbers by the pre-
processor.  

end of file inside comment  

The pre-processor came to the end of file whilst processing a comment.  This is usually an error: 
comments cannot extend across source files.  

multi-byte character constant undefined 

Multi-byte character constants are not supported by the pre-processor when evaluating 
expressions.  

no newline at end of file  

The last character in the file is not a new line. Although this isn’t an error, it may help portability 
of your code if you include a new line at the end of your file.  

syntax error in #if/#endif 

There’s a general problem in the way you’ve used the #if or #endif control  

unknown pre-processor control 'control'  

The pre-prpocessor control #control isn’t a valid ANSI pre-processor control. Usually this is 
caused by a spelling error.  

undefined escape '\char' in character constant When evaluating a pre-processor expression 

the pre-processor encountered an escape sequence \char which isn’t defined by the ANSI 
standard.  

wide character constant undefined  

Wide character constants are not supported by the pre-processor when evaluating expressions.  

Pre-processor error messages  

These error messages come from the pre-processing pass of the compiler. Athough the compiler and pre-processor 
are integrated into the same executable, it is worth distinguishing the pre-processor error messages from those 
generated by the compiler proper.  

# is not followed by a macro parameter 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 127 

 

The # concatenation operator must be followed by a macro parameter name.  

## occurs at border of replacement 

The ## operator cannot be placed at the end of a line.  

#defined token is not a name  

The token defined immediately after #define is not a valid pre processor identifier.  

#defined token 'token' can't be redefined  
You cannot redefine a number of standard tokens such as __LINE__ and __STDC__. The 
token you’re trying to redefine is one of these.  

bad ?: in #if/#elif 

There is an error parsing the ternary ?: operator in an expression.  This is usually caused by 
mismatched parentheses or forgetting one of the ? or : separators.  

bad operator 'operator' in #if/#elif 
The operator operator is not allowed in pre-processor expressions.  

bad syntax for 'defined'The defined standard pre-processor function does not conform to the syntax 

defined(name).  

can't find include file 'file'  
The include file file can’t be found in any of the directories specified in compilation.  

disagreement in number of macro arguments to 'name'  
The macro name has been invoked with either too few or too many actual arguments 
according to its formal argument list.  

duplicate macro argument 'name'  
The macro argument name has been given twice in the argument list of a #define pre-
processor control.  

end of file in macro argument list 

The pre-processor encountered the end of file whilst processing the argument list of a macro.  

illegal operator * or & in #if/#elif.  

The pointer dereference operator * and the address-of operator & cannot be used in pre-
processor expressions.  

insufficient memory 

The pre-processor has run out of memory.  This is a very unlikely error message, but if it does 
occur you should split up the file you are trying to compile into several smaller files.  

macro redefinition of 'name'  
The macro name has been defined twice with two different definitions.  This usually occurs 
when two header files are included into a C source file and macros in the header files clash.  

pre-processor internal error: cause  
The pre-processor has found an internal inconsistency in its data structures.  It would help us if 
you could submit a bug report and supporting files which demonstrate the error.  

stringified macro argument is too long 

The stringified macro argument is longer than 512 characters.  This error is unlikely to occur in 
user code and it isn’t practical to show an example of this failure here.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 128 

 

syntax error in #ifdef/#ifndef 

The pre-processor found an error when processing the #ifdef or #ifndef controls. This is 
usually caused by extra tokens on the pre-processor control line.  

syntax error in #include 

The pre-processor found an error when processing the file to include in an #include 
directive. The usual cause of this is that the file name isn’t enclosed in angle brackets or 
quotation marks, or that the trailing quotation mark is missing.  

syntax error in macro parameters 

The syntax of the comma-separated list of macro parameters in a #define pre- processor 
control is not correct. This can occur for a number of reasons, but most common is incorrect 
puctuation.  

undefined expression value 

The pre-processor encountered an error when evaluating an expression which caused the 
expression to be undefined.  This is caused by dividing by zero using the division or modulus 
operators.  

unterminated string or character constant 

A string is not terminated at the end of a line.  

 

Compiler warning messages  

'function' is a non-ANSI definition  
You have declared the main entry point using an old-style function definition.  main should be 
an ANSI-prototyped function.  The compiler only reports this warning when extra-picky ANSI 
warnings are enabled.  

Old-style function definitions, although valid, should not be used because they are a common 
source of errors and lead to code which is less efficient than a prototyped function. A function 
which takes no parameters should be declared with the parameter list (void).  

'type' is a non-ANSI type 
The unsigned long long type is not supported by ANSI C.  The SmartDeck C compiler 
supports this type as you would expect.  

'type' used as an lvalue  
You used an object of type type as an lvalue.  Assigning through an uncast, dereferenced 
void* pointer is an error and will result in this error.  

empty declaration 

A declaration does not declare any variables (or types in the case of typedef).  

The input file contains no declarations and no functions.  A C file which contains only comments 
will raise this warning.  

local 'type name' is not referenced  
The local declared variable name is not referenced in the function.  

 

Compiler error messages  

'number' is an illegal array size 
Array sizes must be strictly positive — the value number is either zero or negative.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 129 

 

'number' is an illegal bit-field size 
The size of a bit field be within the range 0 to 8*sizeof(int). In many cases this means 
that long data items cannot be used in bit field specifications.  

'type' is an illegal bit-field type 
The type of a bit field must be either an unsigned integer or a signed integer, and type is neither 
of these.  Note that enumeration types cannot be used in bit fields.  

'type' is an illegal field type 
You cannot declare function types in structures or unions, only pointers to functions.  

'(' expected 

An opening parenthsis was expected after the built-in function __typechk.  

addressable object required 

An addressable object is required when applying the address-of operator ’&’. In particular, you 
can’t take the address of a simple constant.  

assignment to const identifier 'name'  
You cannot assign to const-qualified identifiers.  

assignment to const location 

You cannot assign through a pointer to a const-qualified object nor can you assign to members 
of const-qualified structures or unions.  

bad hexadecimal escape sequence '\xchar'  
The character char which is part of a hexadecimal escape sequence isn’t a valid hexadecimal 
digit.  

'break' not inside loop or switch statement 

You have placed a break statement in the main body of a function without an enclosing for, 
do-while, while-do, or switch statement.  This usually happens when you edit the code and 
remove a trailing close brace by mistake.  

cannot initialize undefined 'type'  
You cannot initialize an undefined structure or union type.  Undefined structure or union types 
are usually used to construct recursive data structures or to hide implementation details.  They 
are introduced using the syntax struct tag; or union tag; which makes the type’s structure 
tag known to the compiler, but not the structure or union’s size. Usually, this error indicates that 
an appropriate header file has not been included.  

case label must be a constant integer expressionThe value in a case label must be known 

to the compiler at compilation time and cannot depend upon runtime values.  If you need to 
make multi-way decisions using runtime values then use a set of if-else statements.  

'case' not inside 'switch'  

You have placed a case label outside a switch statement in the body of a function. This usually 
happens when you edit the code and remove a trailing close brace by mistake.  

cast from 'type1' to 'type2' is illegalCasting between type1 and type2 makes no sense and is 

illegal according to the ANSI specification.  Casting, for instance, between an integer and a 
structure is disallowed, as is casting between structures.  

cast from 'type1' to 'type2' is illegal in constant expressionCasting the pointer 

type type1 to type type2 is not allowed in a constant expression as the pointer value cannot 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 130 

 

be known at compile-time.  

conflicting argument declarations for function 'name'  
You have declared the function name with an inconsistent prototype, such as changing the type 
of a parameter or not matching the number of parameters.  

You have placed a continue statement in the main body of a function without an enclosing for, 
do-while, or while-do statement.  This usually happens when you edit the code and remove a 
trailing close brace by mistake.  

declared parameter 'name' is missing 
In an old-style function definition, the parameter name is declared but is missing from the 
function.  

'default' not inside 'switch'  

You have placed a default case label outside a switch statement in the body of a function. This 
usually happens when you edit the code and remove a trailing close brace by mistake.  

duplicate case label 'number'  
You have given two or more case labels the same value — all case labels must have distinct 
values.  

duplicate declaration for 'name' previously declared at pos  

You have used the name name to declare two objects in the same scope with identical 
names.  

duplicate field name 'name' in 'type'  

The field name name has already been used in the structure or union type type.  

empty declaration 

You have started a declaration but haven’t defined an object with it.  This usually occurs when 
declaring structure or union types as the syntax is commonly misunderstood.  

expecting an enumerator identifier 

You must use only identifiers in enumeration types, and the enumeration type must have at least 
one element.  

expecting an identifier 

You have not constructed an old-style parameter list correctly.  

extra 'default' cases in 'switch'  

You have supplied more than one default case label in a switch statement — a switch 
statement can have either no default case label or a single default case label.  

extraneous identifier 'name'  
You have given more than one identifier in a declaration.  This usually happens when you forget a 
comma.  

extraneous old-style parameter list 

You have given an old-style parameter list when declaring a pointer to a function.  

extraneous return value  

You have provided an expression to return from a void function — void functions cannot return 
values.  

field name expected 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 131 

 

You have not used an identifier to select a field name after ‘.’ or ‘->’.  

field name missing 

You have not provided a field name in a structure or union declaration.  

found 'type', expected a function 
You have tried to call something which is not a function.  

frame exceeds size bytes 
The size of the stack frame has exceeded size bytes which means that the application will not 
work at runtime.  

illegal character 'char'  

The character char isn’t valid in a C program. For example, ‘$’ isn’t used in C.  

illegal character '\0ooo'  
The compiler has found a non-printable character which isn’t valid in a C program.  

illegal expression 

You have not constructed an expression correctly. This can happen for many reasons and it is 
impractical to list them all here.  

illegal formal parameter types 

You cannot specify a formal parameter as void, only as a pointer to void.  

illegal initialization for 'name'  

You cannot initialize the function name — functions can’t be initialized.  

illegal initialization for parameter 'name'  

You cannot initialise parameter name in a formal parameter list.  

illegal initialization of 'extern name'  
You cannot initialise the value of external variables.  

 

illegal return type; found 'type1' expected 'type2' 

The type type1 of the expression returned is not compatible with the delcared return type of the 
function which is type2.  

illegal return type 'type'  

You have declared a function with return type type which is a function or an array — a 
function cannot return an array nor a function.  

illegal statement termination 

You have not correctly terminated a statement.  

illegal type 'type'  
You can use const and volatile only on types which are not already declared const or volatile.  

illegal type 'type' in switch expressionYou can only use simple types in switch expressions — 

expressions which are compatible with int.  

illegal type 'type[]' 
You cannot declare arrays of functions, only arrays of function pointers,  

illegal use of incomplete type 'type'  
The return type type of a function must be known before it can be called or declared as a 
function — that is, you cannot use incomplete types in function declarations.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 132 

 

illegal use of type name 'name'  
The name name is a typedef and cannot be used in an expression.  

initializer must be constant  

The value you have used to initialize a variable is not constant and is only known at run time — a 
constant which is computable at compile time is required.  

insufficient number of arguments to 'name'  

You have not provided enough arguments to the function name.  

integer expression must be constant 

The value you have used in a bit field width, in specifying the size of an array, or defining the 
value of an enumeration is not constant — a constant which is computable at compile time is 
required.  

invalid type field declarations  
Structure and union field declarations must start with a type name.  

invalid floating constant 'string'  

The string string is a invalid floating-point constant.  

invalid hexadecimal constant 'string'  
The string string is a invalid hexadecimal constant.  

invalid initialization type; found 'type1' expected 'type2' The type type1 which you 

have used to initialize a variable is not compatible with the type type2 of the variable.  

invalid octal constant 'string'  
The string string is a invalid octal constant.  

invalid operand of unary &; 'name' is declared register 
You cannot take the address of register variables and name is declared as a register variable.  

invalid storage class 'class' for 'type name'  
You have mis-declared the storage class for the variable name of type type. For example, you 
cannot declare global objects auto, nor can you declare parameters static or external.  

invalid type argument 'type' to 'sizeof'  
You cannot apply sizeof to an undefined type or to a function.  

invalid type specification 

The combination of type qualifiers and size specifiers isn’t valid.  

invalid use of 'keyword'  
You can’t use register or auto at global level.  

invalid use of 'typedef' 

You can only use typedef to define plain types without a storage class.  

left operand of . has incompatible type 'type'  
The operand to the left of the ‘.’ isn’t of structure type.  

left operand of -> has incompatible type 'type'  
The operand to the left of the ‘->’ isn’t a pointer to a structure type.  

lvalue required 

A lvalue is required. An lvalue is an object which can be assigned to.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 133 

 

missing 'missing "  

A string constant hasn’t been closed correctly.  

missing type tag 
A structure tag is sometimes required if an undefined structure is used on its own without a 
typedef.  

missing { in initialization of 'type'  
Types with nested structures or unions must be initialised correctly with structures delimited 
with ‘{‘ and ‘}’.  

missing array size 

When declaring an array without an initialiser, you must give explicit array sizes.  

missing identifier 

Your declaration is missing an identifier which defines what is being declared.  

missing label in goto 

An identifier is required immediately after goto.  

missing name for parameter number to function 'name'  
Only function ptototypes can have anonymous parameters; for ANSI-style function declarations 
all parameters must be given names,  

missing parameter type 

An ANSI-style function declaration requires that all parameters are typed in the function 
prototype.  

operand of unary operator has illegal type 'type'  

The operand’s type isn’t compatible with the unary operator operator.  

operands of operator have illegal types 'type1' and 'type2' The types of the left and right 

operands to the binary operator operator are not allowed.  

overflow in value for enumeration constant 'name'  
When declaring name as an enumation constant, the integer value of that constant exceeds 
the maximum integer value.  

redeclaration of 'name' redeclaration of 'name' previously declared at 

position  
The identifier name has already been used in this scope for another purpose and cannot be 
used again.  

redefinition of 'name' previously defined at position  
You have redefined the initialisation of the identifier name — only one definition of the 
identifier’s value is allowed.  

redefinition of label 'name' previously defined at position  
You have redefined the label name with the same name in the function. Labels are global 
to the function, not local to a block.  

size of 'type' exceeds size bytes 
The size of the type type is greater than size bytes. The compiler cannot construct data items 
larger than size bytes for this processor.  

size of 'type[]' exceeds size bytes 

The size of the array of type is greater than size bytes.  The compiler cannot  construct data 



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 134 

 

items larger than size bytes for this processor.  

'sizeof' applied to a bit field 

You cannot use sizeof with a bit field as sizeof returns the number of bytes used for an 
object, whereas a bit field is measured in bits.  

too many arguments to 'name'  

You have provided too many arguments to the function name.  

too many errors 

The compiler has stopped compilation because too many errors have been found in your 
program. Correct the errors and then recompile.  

too many initializers 

You have provided more initializers for an array or a structure than the compiler expected.  Check 
the bracketing for nested structures.  

type error in argument n to name; 'type' is illegal 

The n
th

 actual argument to the function name is of type type and is not compatible with the 

n
th

 formal argument given in the prototype for name. You should check that the formal 
and actual parameters on a function call match.  

type error in argument n to name; found 'type1' expected 'type2' The n
th

 actual 

argument to the function name is of type type1 and is not compatible with the n
th

 formal 
argument given of type type2 in the prototype for name. You should check that the formal 
and actual parameters on a function call match.  

undeclared identifier 'name'  
You have used the identifier name but it has not been previously declared.  

undefined label 'name'  
You have used the label name in a goto statement but no label in the current function has been 
defined with that name.  

undefined size for 'type name'  
You have declared the variable name using the type type, but the size of type is not yet known.  
This occurs when you define a union or structure with a tag but do not define the contents of 
the structure and then use the tag to define a variable.  

undefined size for field 'type name'  
You have declared the field name using the type type, but the size of type is not yet known.  This 
occurs when you define a union or structure with a tag but do not define the contents of the 
structure and then use the tag to define a field.  

undefined size for parameter 'type name'  
You have declared the parameter name using the type type, but the size of type is not yet 
known.  This occurs when you define a union or structure with a tag but do not define the 
contents of the structure and then use the tag to define a parameter.  

undefined static 'type name'  

You have declared the static function name which returns type type in a prototype, but have 
not defined the body of the function.  

unknown enumeration 'name'  
You have not defined the enumeration tag name but have used it to defined an object.  



 

 

© 2012 -2025 MULTOS Limited  

MULTOS is a trademark of MULTOS Limited 135 

 

unknown field 'name' of 'type'  
You have tried to access the field name of the structure or union type type, but a field of that 
name is not declared within that structure.  

unknown size for type 'type'  

You have tried to use an operator where the size of the type type must be known to the 
compiler.  

unrecognized declaration 

The compiler can’t recognise the declaration syntax you have used.  This is usually caused by 
misplacing a comma in a declarator.  

unrecognized statement 

The compiler can’t recognise the start of a statement.  A statement must start with one of the 
statement keywords or must be an expression.  This is usually caused by misplacing a semicolon.  

user type check error: found 'type2' expected 'type2'  

The operand to the __typechk intrinsic function is incorrect.  This occurs when you 
provide a parameter to a the macro function which checks its expected parameters using 
__typechk. You should check the types of parameters you pass to the macro routine.  

 
 
 
 

End of document  


