

© 2023 MULTOS Limited.
MULTOS is a registered trademark of MULTOS Limited.

MDRM

MAO-DOC-TEC-006 v1.60

MULTOS Developer's Reference Manual

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

ii MULTOS is a registered trademark of MULTOS Limited.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. iii

Copyright

© Copyright 1999 – 2023 MULTOS Limited. This document contains confidential and proprietary
information. No part of this document may be reproduced, published or disclosed in whole or part, by any
means: mechanical, electronic, photocopying, recording or otherwise without the prior written permission
of MULTOS Limited.

Trademarks

MULTOS is a registered trademark of MULTOS Limited.
All other trademarks, trade names or company names referenced herein are used for identification only
and are the property of their respective owners

Published by

MULTOS Limited,
350 Longwater Avenue,
Reading,
Berkshire,
RG2 6GF,
UK.

General Enquiries

Email: dev.support@multos.com
Web: http://www.multos.com

http://www.multos.com/

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

iv MULTOS is a registered trademark of MULTOS Limited.

Document References

All references to other available documentation is followed by the document acronym in square
[] brackets. The latest versions are always available from the MULTOS web site http://www.multos.com.

[MDG] mao-doc-ref-005 MULTOS Developer’s Guide

Available under the “MULTOS Application Developer Licence”. To

download visit http://www.multos.com

[MIR] mao-doc-ref-010 MULTOS Implementation Report

Available under the “MULTOS Application Developer Licence”. To

download visit http://www.multos.com

[OFFCARD] mao-one-off-001 MULTOS step/one Off-Card Specification

Available under license from MAOSCO Limited. For further information,

please contact info@multos.com

[FIPS180-3] Secure Hash Standard

National Institute of Standards and Technology (NIST)

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

http://www.multostechnet.com/
http://www.multos.com/
http://www.multos.com/
mailto:kms_support@multos.com
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. v

Contents

INTRODUCTION .. 1

MULTOS step/one .. 1

Conventions and Assumptions .. 1

INSTRUCTIONS ... 2

ADDB .. 3

ADDN .. 4

ADDW ... 6

ANDN .. 7

BRANCH .. 9

CALL .. 11

CLEARN ... 12

CMPB .. 14

CMPN ... 16

CMPW .. 18

DECN .. 20

INCN ... 21

INDEX ... 22

JUMP .. 24

LOAD .. 26

LOADA .. 26

LOADI ... 28

NOTN .. 30

ORN .. 31

PRIMRET ... 33

SETB .. 35

SETW .. 36

STACK ... 37

STORE ... 38

STOREI .. 40

SUBB ... 42

SUBN .. 43

SUBW ... 45

SYSTEM ... 46

TESTN ... 48

XORN .. 50

PRIMITIVES ... 52

Add BCDN ... 53

AES ECB Decipher ... 55

AES ECB Encipher ... 57

Bit Manipulate Byte ... 59

Bit Manipulate Word ... 62

Block Decipher ... 65

Block Encipher .. 70

Call Codelet .. 75

Call Extension 0,1,2,3,4,5,6 .. 77

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

vi MULTOS is a registered trademark of MULTOS Limited.

Card Block .. 79

Card UnBlock .. 81

Check BCD .. 83

Check Case ... 84

Checksum ... 86

Configure READ BINARY ... 89

Control Atomic Writes ... 92

Control Auto Reset WWT ... 93

Convert BCD ... 95

Delegate ... 97

DES ECB Decipher ... 99

DES ECB Encipher ... 101

DivideN ... 103

ECC Addition .. 105

ECC Convert Representation .. 107

ECC ECIES Decipher .. 109

ECC ECIES Encipher .. 111

ECC Elliptic Curve Diffie Hellman ... 113

ECC Equality Test .. 115

ECC Generate Key Pair ... 117

ECC Generate Signature ... 119

ECC Inverse ... 121

ECC Scalar Multiplication ... 123

ECC Verify Point ... 125

ECC Verify Signature .. 127

Exchange Data .. 129

Exit to MULTOS and Restart ... 131

Flush Public .. 133

Generate Asymmetric Hash General ... 135

Generate Asymmetric Signature General .. 139

Generate DES CBC Signature ... 141

Generate MAC.. 143

Generate Random Prime ... 145

Generate RSA Key Pair ... 148

Generate Triple DES CBC Signature ... 150

Get Configuration Data .. 152

Get AID ... 153

Get Available Interface Types .. 154

Get Data ... 156

Get Delegator AID .. 158

Get DIR File Record .. 160

Get FCI State .. 162

Get File Control Information .. 163

Get Manufacturer Data .. 165

Get Memory Reliability .. 167

Get MULTOS Data .. 169

Get PIN Data ... 171

Get Process Event .. 173

Get Purse Type ... 174

Get Random Number ... 176

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. vii

Get Replaced Application State ... 178

Get Session Size ... 179

Get Static Size .. 180

Get Transaction State .. 181

GSM Authenticate .. 182

Initialise PIN ... 184

Initialise PIN Extended ... 186

Load CCR .. 188

Lookup .. 190

Lookup Word.. 192

Manage Stack ... 194

Memory Compare .. 196

Memory Compare Enhanced ... 198

Memory Compare Fixed Length .. 200

Memory Copy... 202

Memory Copy Additional Static ... 204

Memory Copy Fixed Length ... 207

Memory Copy From Replaced Application .. 209

Memory Copy Non-Atomic .. 210

Memory Copy Non-Atomic Fixed Length ... 212

Memory Fill .. 214

Memory Fill Additional Static... 215

Modular Exponentiation / RSA Sign ... 217

Modular Exponentiation CRT / RSA Sign CRT .. 219

Modular Exponentiation CRT Protected / RSA Sign CRT Protected .. 221

Modular Inverse ... 224

Modular Multiplication .. 226

Modular Reduction .. 228

MultiplyN ... 230

Pad ... 232

Platform Optimised Checksum .. 234

Query0, Query1, Query2, Query3 .. 236

Query Channel ... 238

Query Codelet .. 239

Query Cryptographic Algorithm ... 241

Query Interface Type ... 243

Read PIN ... 245

Reject Process Event .. 246

Reset Session Data ... 246

Reset WWT .. 248

Return from Codelet .. 250

RSA Verify ... 252

Secure Hash.. 254

Secure Hash IV ... 256

SEED ECB Decipher ... 259

SEED ECB Encipher ... 261

Set AFI .. 263

Set ATR File Record .. 264

Set ATR Historical Characters... 266

Set ATS Historical Characters ... 268

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

viii MULTOS is a registered trademark of MULTOS Limited.

Set FCI File Record.. 270

Set PIN Data ... 272

Set Silent Mode .. 273

Set Transaction Protection .. 275

Set Contactless Select SW .. 277

Set Select SW ... 279

SHA-1 .. 281

Shift Left ... 282

Shift Right ... 284

Shift Rotate .. 286

Store CCR.. 287

Subtract BCDN.. 289

Triple DES Decipher.. 291

Triple DES Encipher .. 293

Unpad ... 295

Update Process Events ... 297

Update Session Size ... 298

Update Static Size .. 299

Verify Asymmetric and Retrieve General .. 300

Verify PIN ... 302

APDU COMMANDS ... 303

Usage Notes ... 303

CARD UNBLOCK .. 304

CHECK DATA ... 306

CREATE MEL APPLICATION .. 308

DELETE MEL APPLICATION ... 310

FREEZE .. 312

GET CONFIGURATION DATA .. 313

GET DATA ... 316

GET MANUFACTURER DATA .. 318

GET MULTOS DATA .. 319

GET PURSE TYPE ... 321

GET RESPONSE ... 322

LOAD APPLICATION SIGNATURE .. 324

LOAD CODE .. 325

LOAD DATA .. 326

LOAD DATA (Extended) .. 327

LOAD DIR FILE RECORD .. 329

LOAD FCI RECORD .. 330

LOAD KTU CIPHERTEXT .. 331

OPEN MEL APPLICATION .. 332

READ BINARY.. 335

READ RECORD(S) .. 337

SELECT FILE ... 338

SET MSM CONTROLS .. 341

MULTOS STATUS CODES ... 342

INSTRUCTION MAP ... 344

PRIMTIVE SET LISTING .. 353

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. ix

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 1

Introduction
The MULTOS Developer’s Reference Manual is intended to be a concise presentation of the MULTOS low-
level API and associated information. All of the instructions and primitives are defined without reference
to any implementation. The MULTOS Implementation Report should be consulted for any specific
implementation requirements.

MULTOS step/one

This product is intended to provide issuers a low cost, high security, MULTOS compatible platform that can
be used to deploy EMV applications using Static Data Authentication only. MULTOS step/one platforms
support all instructions described in this document. However, for MULTOS step/one all primitives are
considered to be optional. If implemented they will support the API described in this document. For
further information regarding primitive support for MULTOS step/one, see www.multos.com.

Conventions and Assumptions

When reading this document there are some conventions and assumptions in place. They are:

• Hexadecimal numbers are indicated using a prefix of ‘0x’. For example, 0x16 is an hexadecimal
value equal to 22 decimal.

• MULTOS is big-endian; i.e., the most significant byte is found at the lowest segment address and
the least significant byte at the highest.

• Byte-blocks are always treated as unsigned.

• The stack operates on the principle of “last in, first out”.

This document attempts to avoid development tool specific syntax. If you wish to try the examples given,
you may need to modify the code to work within your particular development environment.

http://www.multos.com/

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

2 MULTOS is a registered trademark of MULTOS Limited.

Instructions
The following sub-sections define the instructions available to an application. In addition to the
conventions and assumptions given in the introduction there are some additional points to take into
account. They are:

• If a label can be used, but is not specified, then the instruction will execute using a value of the
appropriate size found on the stack. For example, “ADDB , 5” adds five to the byte on top of the
stack.

• A label can be a named memory location that the assembler will translate into an address or it can
be an address. For example, “ADDB myVar, 5” adds five to the variable held at the named location
myVar, while “ADDB PB[0], 5” adds five to the byte value found at the base of public memory.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 3

ADDB

This instruction adds the literal byte to either the byte at the top of the stack or the byte held at the
location specified by the label.

Syntax

ADDB [label], byte

Remarks

The result of the addition is written to either the byte at the top of the stack or, if specified, the label. If the
result of the addition is greater than 255 the condition code register is updated as below and the value
returned is truncated to one byte.

Condition Code

 C V N Z

- - - - X - - X

C Set if result of the addition is greater than 255, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result of the addition is zero, cleared otherwise

Example

The following line adds 32 to the tenth byte of static memory:

ADDB SB[9], 0x20

The following example adds 16 to the value held at a named location:

// declare session variable

myNumber DYNAMIC BYTE

ADDB myNumber, 0x10

The next example adds 27 to the value placed on the top of the stack:

ADDB , 0x1B

The following examples show how the CCR is updated upon completion of the addition:

0xFF + 0x01 = 0x00; Carry is set and Zero is set
0xFF + 0x02 = 0x01; Carry is set and Zero is cleared
0x10 + 0x20 = 0x30; Carry and Zero are cleared
0x00 + 0x00 = 0x00; Carry is cleared and Zero is set

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

4 MULTOS is a registered trademark of MULTOS Limited.

ADDN

This instruction adds the byte-block at the top of the stack to a byte-block specified by the label. If the
label is omitted then the top two byte-blocks on the stack are used.

Syntax

ADDN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the operands of size
block_length will be taken from the stack.

The result of the addition will be written to the address corresponding to the label or, if no label is given, to
the byte block immediately below the topmost block. In no case is the top byte block changed by the
operation.

The operation will work if the two blocks overlap.

Condition Code

 C V N Z

- - - - X - - X

C Set if a carry occurs, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise.

Example

The following example adds the four bytes at the top of the stack to the four bytes at the base of the static
area:

ADDN SB[0],4

The following example is the same as the previous example, but uses a label to identify the variable instead
of using a register/offset pair directly.

myVar STATIC BYTE 4

ADDN myVar,4

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 5

The following example adds the four bytes at the top of the stack to the four bytes immediately below
them on the stack.

//Stack = (bottom) 10,00,00,00,12,34,56,78 (top)

ADDN ,4

//Stack = (bottom) 22,34,56,78,12,34,56,78 (top)

The following example performs the addition of 0x00FF and 0x1001 on the stack and then adds the result,
0x1100, to a variable held in the static segment.

sResult STATIC Word = 0x1111

 PUSHW 0x00FF //Stack = 00,FF

 PUSHW 0x1001 //Stack = 00,FF,10,01

 ADDN ,2 //Stack = 11,00,10,01

 POPW //Stack = 11,00

 ADDN sResult,2 //sResult now equals 0x2211

 POPW //Leave stack as found.

The following examples show how the CCR flags are set:

0xFFFFFFFF + 0x00000001 = 0x00000000; Carry is set and Zero is set
0xFFFFFFFF + 0x00000002 = 0x00000001; Carry is set and Zero is cleared
0x10000000 + 0x200000000 = 0x30000000; Carry and Zero are cleared
0x00000000 + 0x00000000 = 0x00000000; Carry is cleared and Zero is set

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

6 MULTOS is a registered trademark of MULTOS Limited.

ADDW

This instruction adds the literal word to either the word at the top of the stack or the word held at the
location specified by the label.

Syntax

ADDW [label], word

Remarks

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the operands will be
taken from the stack.

The result of the addition will be written to the address corresponding to the label or, if no label is given, to
the topmost word.

Condition Code

 C V N Z

- - - - X - - X

C Set if result is greater than 65535, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Example

The following line adds 0x2020 to the word at the bottom of the static segment:

ADDW SB[0000],0x2020

The following line adds 0x1010 to the variable declared as myNum:

ADDW myNum ,0x1010

The following line adds 0x1010 to the current stack word.

ADDW ,0x1010

The following examples show how the CCR is set:

0xFF00 + 0x0100 = 0x0000; Carry is set and Zero is set
0xFF00 + 0x0200 = 0x0100; Carry is set and Zero is cleared
0x1000 + 0x2000 = 0x3000; Carry and Zero are cleared
0x0000 + 0x0000 = 0x0000; Carry is reset and Zero is set

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 7

ANDN

This instruction performs a bit-wise AND on a byte-block at the top of the stack with another byte-block
specified by a label. If the label is omitted then the top two byte-blocks on the stack are used.

Syntax

ANDN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the operands of size
block_length will be taken from the stack.

The result of the AND will be written to the address corresponding to the label or, if no label is given, to
the byte block immediately below the topmost block. In no case is the top byte block changed by the
operation.

The operation will work if the two blocks overlap.

The Carry Flag is not affected by this instruction.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

8 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example performs a bit-wise AND operation between the four bytes at the top of the stack
to the four bytes at the base of the static area. The result is written to SB[0].

ANDN SB[0],4

The following example is the same as the previous example, but uses a label to identify the variable instead
of using a register/offset pair directly:

myVar STATIC BYTE 4

ANDN myVar,4

The following example performs a bit-wise AND operation between the four bytes at the top of the stack
to the four bytes immediately below it on the stack.

//Stack = F0,F0,F0,F0,12,34,56,78

ANDN ,4

//Stack = 10,30,50,70,12,34,56,78

The following example pushes two blocks of four bytes onto the stack and uses them as operands in a bit-
wise AND operation. To further illustrate the use of the instruction a two byte bit-wise AND is then
performed with a static variable.

sResult STATIC WORD = 0xF0F0

 PUSHW 0xFF00 //Stack = FF,00

 PUSHW 0xFF00 //Stack = FF,00,FF,00

 PUSHW 0x1234 //Stack = FF,00,FF,00,12,34

 PUSHW 0x5678 //Stack = FF,00,FF,00,12,34,56,78

 ANDN ,4 //Stack = 12,00,56,00,12,34,56,78

 // the operation is: F0F0 AND 5678

 ANDN sResult,2 //sResult = 0x5070

The following examples show how the CCR is set:

0xFF00 & 0x00FF = 0x0000; Zero is set
0xF0F0 & 0x00FF = 0x00F0; Zero is cleared

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 9

BRANCH

The branch instruction is used to move the code pointer to a location in the application relative to the
current location. The branch may be made conditional on the current values of the condition register.

Syntax

BRA offset //Branch always

BEQ offset //Branch if Equal

BLE offset //Branch if Less Than or Equal

BLT offset //Branch if Less Than

BGT offset //Branch if Greater Than

BGE offset //Branch if Greater Than or Equal

BNE offset //Branch if Not Equal

Remarks

The offset value refers to a location relative to the current instruction within the application’s code space.
It can be expressed as a fixed numeric value or as a named label within the application’s source code. The
latter case relies on the assembler to calculate the appropriate relative offset.

The BRANCH instruction has a range of -128 to 127 bytes inclusive; i.e., the branch can refer to a location
128 bytes prior to the current location of the code pointer or 127 bytes ahead of that location. If the
branch destination lies outside of this range then a JUMP instruction should be used. Note that if the
destination is within the given range, a branch is preferred because of the reduced code size produced.

The Code Pointer will point to the next instruction to execute and therefore a branch to relative address
zero will have no effect, whilst a branch of -2 will branch back to the branch instruction. However, in most
applications the value of the relative jump will be calculated automatically by the assembler.

The following table shows the condition code flags which are checked for each of the conditional branch
instructions.

Mnemonic Condition - description
BEQ Z – CCR Z flag set
BLT C – CCR C flag set
BLE C or Z – either CCR C or CCR Z flag set
BGT !(C or Z) – neither CCR C nor CCR Z flag set
BGE !C– CCR C flag not set
BNE !Z – CCR Z flag not set
BRA always

The conditions based on the state of the carry flag (LT, LE, GT, and GE) are determined using unsigned
comparisons. MULTOS does not interrogate the V or N flags and, therefore, does not directly support
conditional program flow based on signed comparisons. If required, the application developer could
implement such a flow by interrogating the N and V flags in the application source code. These values are
made available using the primitive ‘Load CCR’. Note that the underlying platform may not set the N or V
flags.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

10 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example is a fragment of code that uses a conditional branch instructions to implement a
loop.

loopCounter DYNAMIC BYTE

 // put zero value on stack

 PUSHZ 1

 // store it to counter

 STORE loopCounter, 1

labelStartofLoop

 // carry out processing

 // increment loop counter

 INCN loopCounter, 1

 // compare counter to literal maximum loop value

 CMPB loopCounter, 5

 // if loop counter < 5 go around again

 BLT labelStartofLoop

The next example illustrates the use of BRANCH when handling the instruction byte of an APDU command.

pINS EQU PT[-12]

 CMPB pINS, 0xA4

 BEQ cmdSelectFile

 CMPB pINS, 0x10

 BEQ cmdINS10

 CMPB pINS, 0x20

 BEQ cmdINS20

errNoINS

 EXITSW 0x6D,0x00

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 11

CALL

This instruction is used to call a function.

Syntax

CALL [function] //Call always

CEQ function //Call if Equal

CLE function //Call if Less Than/Equal

CLT function //Call if Less Than

CGT function //Call if Greater Than

CGE function //Call if Greater Than/Equal

CNE function //Call if Not Equal

Remarks

The following table shows the condition code flags which are checked for each of the conditional call
instructions.

Mnemonic Condition - description
CEQ Z – CCR Z flag set
CLT C – CCR C flag set
CLE C or Z – either CCR C or CCR Z flag set
CGT !(C or Z) – neither CCR C nor CCR Z flag set
CGE !C– CCR C flag not set
CNE !Z – CCR Z flag not set
CALL always

The conditions based on the state of the carry flag (LT, LE, GT, and GE) are determined using unsigned
comparisons. MULTOS does not interrogate the V or N flags and, therefore, does not directly support
conditional program flow based on signed comparisons. If required, the application developer could
implement such a flow by interrogating the N and V flags in the application source code. These values are
made available using the primitive ‘Load CCR’. Note that the underlying platform may not set the N or V
flags

The CALL instruction is used to call a function. This would be written in assembler as a label and in MEL as a
code address. It is also possible to omit the function to call from the instruction. In this case the code
address to call is taken as the top two bytes of the stack, which the instruction will pop from the stack.
Furthermore, the top two bytes of the stack must be a valid code address and the call must not be
conditional.

Prior to the execution of the called function this instruction pushes four bytes of data on to the stack, the
current local base register followed by the current code pointer register. The current code pointer register
will point to the next instruction after the call, i.e., the location where execution will resume once the
function returns. The value of the Local Base register is set to match the new Dynamic Top.

Provided that the called function has not changed the default value of the previous code pointer address
execution continues from the instruction directly after the CALL instruction. Otherwise, execution resumes
at the code address given.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

12 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example shows a simple function call. A function called fnBiggest accepts two words as input
parameters and returns the largest of the two words. After the CALL instruction the value of 0x1000 will
be left on the stack.

start

 PUSHW 0x0100

 PUSHW 0x1000

 CALL fnBiggest

 EXIT

//==

fnBiggest

//==

// Input Param = wValue1, wValue2

// Ouptut Param = wBiggest

//

// WBiggest is the larger of the two input words

//==

//lWord1 IN WORD

//lWord2 IN WORD

// The negative address relative to this function’s

// Lower Base include the 4 bytes of data that the

// call instruction places on the stack

lWord1 EQU LB[-8]

lWord2 EQU LB[-6]

 LOAD lWord1,2

 LOAD lWord2,2

 CMPN ,2

 BLT fnBiggest_leave

 POPW

fnBiggest_leave

 RET 4,2

CLEARN

This instruction sets a byte-block to zero.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 13

Syntax

CLEARN [label],block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the data of size
block_length on the stack will be cleared.

The Condition Code Register is not affected by this instruction.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example clears the first 255 bytes of the public area and the top ten bytes of the stack.

pBase EQU PB[0000]

 CLEARN pBase,0xFF

 CLEARN ,0x0A

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

14 MULTOS is a registered trademark of MULTOS Limited.

CMPB

This instruction compares a literal byte with either the byte at the top of the stack or the byte held at the
location specified by the label.

Syntax

CMPB [label], byte

Remarks

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the instruction will
compare the literal byte with the byte value at the top of the stack.

The comparison is performed by subtracting the literal byte from the value given. The result is discarded
but the condition code register is updated. Note that the byte values are treated as unsigned values.

The result of the comparison is held in the Condition Code Register based on the criteria given in the table
below.

Carry Zero Description
0 0 Target Byte > Literal Byte
0 1 Target Byte = Literal Byte
1 0 Target Byte < Literal Byte
1 1 Not possible

Condition Code

 C V N Z

- - - - X - - X

C See table above
V Unchanged
N Unchanged
Z See table above

Example

The following example compares the byte held at PT[-12], to the literal value 0x90.

CMPB PT[-12], 0x90

The following example is the same as the above example but uses a label to define the byte’s location.

pINS EQU PT[-12]

 CMPB pINS, 0x90

The following example compares the byte held at the top of the stack to the literal byte 0x90.

CMPB ,0x90

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 15

The following example compares the class byte of the current APDU and jumps if it does not match what is
expected.

pCLA EQU PT[-13]

 CMPB pCLA, 0x90

 JNE errWrongClass

//continue processing

errWrongClass

 //insert error code

 EXITSW 0x6E,0x00

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

16 MULTOS is a registered trademark of MULTOS Limited.

CMPN

This instruction compares a byte-block of size n with another of the same size.

Syntax

CMPN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the two blocks of
data of size block_length on the stack will be compared.

The result of the comparison is held in the Condition Code Register based on the criteria given in the table
below.

Carry Zero Description
0 0 Labelled Byte-block > Stack Top Byte-block
0 1 Labelled Byte-block = Stack Top Byte-block
1 0 Labelled Byte-block < Stack Top Byte-block
1 1 Not possible

The byte-block occupying the top of the stack is used as the basis of the comparison. The labelled byte-
block is the block of size block_length found at the location given. If no label is given, then labelled byte-
block is the data of size block_length below the block occupying the top of the stack.

The operation will work if the two blocks overlap.

Condition Code

 C V N Z

- - - - X - - X

C See table above
V Unchanged
N Unchanged
Z See table above

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 17

Example

The following example compares the four bytes at the top of the stack to the four bytes at the base of
public.

CMPN PB[0],4

The following example is the same as the previous example, but uses a label to identify the four bytes of
public.

pPIN EQU PB[0]

CMPN pPIN,4

The following examples compare the four bytes at the top of the stack with the four bytes immediately
below them on the stack.

PUSHW 0x1234

PUSHW 0x5678

PUSHW 0x1234

PUSHW 0x5678

CMPN , 4

POPN 8 // clean up stack

BEQ someLabel // conditional branch will fire

PUSHW 0x1234

PUSHW 0x5678

PUSHW 0x1234

PUSHW 0x6789

CMPN , 4

POPN 8 // clean up stack

BEQ someLabel // conditional branch will not fire

The following example compares a block of bytes held at the base of public to a byte-block held in static
memory. This could typically be used to perform PIN verification.

sPIN STATIC BYTE 04 = 1,2,3,4

pPIN EQU PB[0]

 LOAD pPIN,4

 CMPN sPIN,4

 BNE PinDoesNotMatch

 //Pin Matches

 //Insert code to flag a valid pin

 EXITSW 0x90,0x00

PinDoesNotMatch

 EXITSW 0x64,0x00

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

18 MULTOS is a registered trademark of MULTOS Limited.

CMPW

This instruction compares a word value against a word literal.

Syntax

CMPW [label], word

Remarks

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the word on top of
the stack will be compared to the literal word.

The result of the comparison is held in the Condition Code Register based on the criteria given in the table
below.

Carry Zero Description
0 0 Target Word > Literal Word
0 1 Target Word = Literal Word
1 0 Target Word < Literal Word
1 1 Not possible

Condition Code

 C V N Z

- - - - X - - X

C See table above
V Unchanged
N Unchanged
Z See table above

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 19

Example

The following example compares the literal word 0x0000 with the word whose starting address is eleven
bytes from the top of the public area, PT[-11].

CMPW PT[-11],0x0000

The following example is the same as the previous example except that a label is used to identify the start
address,. which corresponds to the P1 and P2 parameter bytes.

pP1P2 EQU PT[-11]

CMPW pP1P2, 0x0000

The following example compares the word at the top of the stack with the literal word 0x000.

CMPW ,0x0000

The following example compares the parameter bytes of the current APDU and jumps if they do not match
what is expected.

 pP1P2 EQU PT[-11]

 CMPW pP1P2, 0x01FF

 JNE errWrongParameters

 // if equal processing continues

errWrongParameters

 //insert error code

 EXIT

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

20 MULTOS is a registered trademark of MULTOS Limited.

DECN

This instruction performs a block decrement; i.e., it subtracts one from the value of a byte-block.

Syntax

DECN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the data of size
block_length on the stack will be decremented.

The CCR zero flag is updated by this instruction. For example,

DECN (0x000001) = 0x00000000; Zero is set
DECN (0x000011) = 0x00000010; Zero is reset

However, DECN does not modify the carry flag of the condition register. Decrementing a zero value by one
results in 0xFFFF...FF. This does not set zero flag.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Example

The following example decrements the four byte-block at the base of the static area by one.

DECN SB[0],4

The following example is the same as the previous example except that it uses a label to identify the
variable to be decremented

sVar STATIC BYTE 4

 DECN sVar,4

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 21

INCN

This instruction performs a block increment; i.e., it adds one to the value of a byte-block.

Syntax

INCN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the data of size
block_length on the stack will be incremented.

The CCR zero flag is updated by this instruction. For example,

INCN (0x000001) = 0x00000000; Zero is set
INCN (0x000011) = 0x00000010; Zero is reset

However, INCN does not modify the carry flag of the condition register.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Example

The following example increments the four byte-block at the base of the static area by one.

INCN SB[0],4

The following example is the same as the previous example except that it uses a label to identify the
variable to be incremented

sVar STATIC BYTE 4

 INCN sVar,4

The following example decrements the word stored at the top of the stack by one.

INCN ,2

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

22 MULTOS is a registered trademark of MULTOS Limited.

INDEX

This instruction calculates the address of a record within an array of fixed length records.

Syntax

INDEX label, record_length

Remarks

This instruction also uses the top byte of the stack to indicate which record index is required. As this value
is held in a single byte the maximum number of records is 256. Note also that the array index value uses
zero based counting; e.g., the first record is at offset 0.

The record_length value is specified using a single byte. Therefore, the maximum length of a record is 255
bytes

The label, which must be present, may be either a named memory location, which the assembler will
translate into a register / offset pair, or an explicit register / offset pair.

The result of the index instruction is a two byte value, which indicates the starting address of the record
requested. Note, however, there is no requirement for the resulting address be valid. This instruction will
calculate a two byte value based solely on the values passed to it.

The Index instruction performs the following calculation:

result = address(label) + (record_length * record_indicator)

where, address(label) is the segment address of the label or register/offset pair, record_length is a literal
byte representing the record length, and record_indicator is the top byte of the stack.

Condition Code

 C V N Z

- - - - X - - X

C Set if a carry occurs, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 23

Example

The following extended example

// sByteArray assumed to start at Static Bottom;

// i.e., start address is SB[0]

sByteArray STATIC BYTE = 0xFF, 0xEF, 0xDF, 0xCF

// sWord Array assumed to follw previous array;

// i.e., start address is SB[4]

sWordArray STATIC WORD = 0x1010, 0x0101, 0xA5A5, 0x5A5A

// Get address of 3rd byte of sByteArray

PUSHB 2

INDEX sByteArray, 1

// calculation would be result = 0 + (1 * 2) = 2.

// Therefore address of third byte is SB[2]

POPN 3 // clean stack of record_index and result

// Get 4th word of sWordArray

PUSHB 3

INDEX sWordArray, 2

// calculation would be result = 4 + (2 * 3) = 10

// Therefore starting address of third word is SB[10]

The following example calculates the address of the twelfth record of an array of records, then copies this
onto the stack. Unlike the previous example no assumption regarding the starting address of the array is
made.

recNumber EQU 16

recLength EQU 32

sArray STATIC BYTE recNumber*recLength

 PUSHB 11 //the twelfth record

 INDEX sArray, recLength

 LOADI ,recLength

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

24 MULTOS is a registered trademark of MULTOS Limited.

JUMP

This instruction causes execution to continue from a different location in the application’s code space. The
jump may be made conditional on the current values of the condition register.

Syntax

JMP [label] //Jump always

JEQ label //Jump if Equal

JLE label //Jump if Less Than/Equal

JLT label //Jump if Less Than

JGT label //Jump if Greater Than

JGE label //Jump if Greater Than/Equal

JNE label //Jump if Not Equal

Remarks

This instruction differs from BRANCH in that the specified instruction is absolute from the start of the code
rather than relative to the current instruction. The resulting machine code for JUMP is also one byte larger
than that for BRANCH.

The label can be expressed as a fixed numeric value or as a named label within the application’s source
code. The latter case relies on the assembler to calculate the appropriate offset.

Similar to CALL, it is possible to omit the label from the instruction. In this case the code address to which
to jump is taken to be the top two bytes of the stack, which the instruction will pop from the stack.
Furthermore, the top two bytes of the stack must be a valid code address and the jump must not be
conditional.

The following table shows the condition code flags which are checked for each of the conditional branch
instructions.

Mnemonic Condition - description
JEQ Z – CCR Z flag set
JLT C – CCR C flag set
JLE C or Z – either CCR C or CCR Z flag set
JGT !(C or Z) – neither CCR C nor CCR Z flag set
JGE !C– CCR C flag not set
JNE !Z – CCR Z flag not set
JRA always

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 25

The conditions based on the state of the carry flag (LT, LE, GT, and GE) are determined using unsigned
comparisons. MULTOS does not interrogate the V or N flags and, therefore, does not directly support
conditional program flow based on signed comparisons. If required, the application developer could
implement such a flow by interrogating the N and V flags in the application source code. These values are
made available using the primitive ‘Load CCR’. Note that the underlying platform may not set the N or V
flags.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

In this example the labels ‘SetID’ and ‘QueryID’ are the designations of two functions. To execute a
function, the proper APDU command instruction byte must be sent.

pINS EQU PT[-12]

 LOAD pINS,1

 // if pINS = 0x10 then goto SetID

 CMPB ,0x10

 JEQ SetID

 // if pINS = 0x20 then goto QueryID

 CMPB ,0x20

 JEQ QueryID

 // if neither if statement applies

 // then exit and return 6D00

UnrecognisedInstruction

 EXITSW 0x6D,0x00

SetID

 //SetID command processing

 EXIT

QueryID

 //QueryID command processing

 EXIT

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

26 MULTOS is a registered trademark of MULTOS Limited.

LOAD

This instruction pushes a byte-block onto the stack from either the current top of the stack or a location
specified by the label.

Syntax

LOAD [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes.

If the label is omitted then the byte-block at the top of the stack is pushed; i.e., the top of the stack is
duplicated.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example pushes the eight bytes held at the base of public onto the stack.

LOAD PB[0],8

The following example is the same as the previous example except that it uses a label to identify the
location of the eight bytes at the base of public

pKey EQU PB[0]

LOAD pKey,8

The following example pushes the top four bytes of the stack back onto the stack; that is it duplicates the
top four bytes of the stack.

LOAD ,4

The following example loads a four byte number from the bottom of the public segment onto the stack,
doubles it by adding the value to itself, and leaves the result on the stack.

LOAD PB[0000],4

LOAD ,4

ADDN ,4

POPN 4

LOADA

This instruction pushes the address of a variable or register/offset onto the stack.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 27

Syntax

LOADA label

Remarks

The label may be either a named memory location, which the assembler will translate into a register /
offset pair, or an explicit register / offset pair.

There is no requirement that the address is a valid address.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example pushes the address of the top byte of static onto the stack.

LOADA ST[-1]

The following example pushes the address of a variable onto the sack.

sMyVar STATIC WORD

LOADA sMyVar

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

28 MULTOS is a registered trademark of MULTOS Limited.

LOADI

This instruction pushes a block of bytes to the stack using indirect addressing.

Syntax

LOADI [label],length

Remarks

If the label is given then the two byte address held at the label are used as the address of the byte-block to
push onto the stack. If the label is omitted then the two bytes on the top of the stack are used as the
address of the byte-block to push onto the stack.

The bytes stored at the label are not loaded. They are interpreted as the address of the byte-block to push
onto the stack.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example pushes a variable onto the stack using indirect addressing. The variable sAddrVar is
used to hold the address of the variable to push onto the stack. In this case the variable is assumed to be
eight bytes long.

 sAddrVar STATIC WORD

 LOADI sAddrVar,8

The following example pushes a block of bytes onto the stack using the top two bytes of the stack as an
address.

LOADI ,2

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 29

The following example calculates the address of the twelfth record of an array of records and then copies
this record onto the stack. The Index instruction is used to calculate the address of the record and leave
this on the stack; the LOADI instruction is used to push the record indirectly using the address on the top of
the stack.

recNumber EQU 16

recLength EQU 32

sArray STATIC BYTE recNumber*recLength

 PUSHB 11 //the twelfth record

 INDEX sArray, recLength

 LOADI ,recLength

The following example uses a variable, recAddr, to hold the address of the current record which is then
moved to the base of public.

recAddr DYNAMIC BYTE 2

// Put address of sArray on stack

 LOADA sArray

// Move value to recAddr

 STORE recAddr, 2

// Copy current record to public

 LOADI recAddr,recLength

 STORE PB[0],recLength

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

30 MULTOS is a registered trademark of MULTOS Limited.

NOTN

This instruction performs a bit-wise NOT on a byte-block.

Syntax

NOTN [label],block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes.

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair that gives the address of the block to be inverted
bit-wise. If a label is not specified, then the data of size block_length on the stack will be inverted.

The result is written to the label or the byte-block on the stack.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Example

The following example performs a bit-wise NOT operation on the first two bytes of the static area.

NOTN SB[0],2

The following example is the same as the previous example except that it uses a label to identify the bytes
to perform the bit-wise NOT operation on.

myVar STATIC WORD

NOTN myVar,2

The following example performs a bit-wise NOT on the top eight bytes of the stack.

NOTN ,8

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 31

ORN

This instruction performs a bit-wise OR on a byte-block at the top of the stack with another byte-block
specified by a label. If the label is omitted then the top two byte-blocks on the stack are used.

Syntax

ORN [label],block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the data of size
block_length on the top of the stack and the byte block of size block_length below it on the stack will be
the OR operands.

The result of the OR operation is written to the lower byte-block on the stack, or if specified, the byte-block
held at the label. The byte-block at the top of the stack is not changed by this instruction.

The result of the operation updates the zero flag in the Condition Code Register. For example,

0x0000 OR 0x0000 = 0x0000; Zero is set
0xF0F0 OR 0xF0FF = 0xF0FF; Zero is reset

The Carry Flag is not affected by this instruction.

The operation will work if the two blocks overlap.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

32 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example performs a bit-wise OR operation on the first two bytes of the static area.

ORN SB[0],2

The following example is similar to the previous example except that it uses a label to identify the bytes to
perform the bit-wise OR operation on.

myVar STATIC WORD

ORN myVar,2

The following example uses two 8-byte blocks on the stack as operands.

ORN ,8

The following example the top stack byte and the byte below it on the stack are the OR operands. Note
that the result is written to the lower stack byte.

PUSHB 0x10 // Stack = 10

PUSHB 0x02 // Stack = 10,02

ORN , 1 // Stack = 12,02

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 33

PRIMRET

This instruction is used to call a primitive or return from a function call.

Syntax

PRIM primitive [,byte1 [,byte2 [,byte3]]]

RET [[inBytes] [,outBytes]]

Remarks

This instruction performs two different operations depending upon the syntax used:

• The PRIM mnemonic is used to call a primitive with up to three bytes of arguments.

• The RET mnemonic is used to return from a function. The inBytes and outBytes are used to specify
the number of bytes used by input parameters and the number of bytes which are to be returned
as result bytes respectively. These are used by MULTOS to clean up the stack following the
function's return.

Both the inBytes and outBytes values are specified using a single byte. Therefore, the maximum number of
parameter bytes or returned bytes is 255 bytes

After returning from a function the stack will be cleaned up. The upper part of the following diagram shows
the state of the stack while a function is executing. The lower portion illustrates the stack after the RET
instruction executes.

The size of the input parameters is given in inBytes while the size of the result bytes is given in outBytes.
For details on the control bytes see the CALL instruction. Any stack used by the function, shown as
Function Stack in the above diagram, is removed along with any local variables declared by the function.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

34 MULTOS is a registered trademark of MULTOS Limited.

Local variables are shown as Function Locals in the above diagram. The overall effect of this is to remove
the input parameters, return the output bytes and restore the LB and CP registers.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Although this instruction does not change any of the condition code flags the primitive called may itself
have an effect on the flags.

Example

The following examples illustrate the use of the mnemonic PRIM. See the primitives section of this
document for explanations of the primitives used.

// Call CheckCase for ISO APDU Command Case3

PUSHB 3

PRIM 0x01

// Call MultiplyN to multiply two 2-byte values

PUSHW 6

PUSHW 1289

PRIM 0x10, 2

// Call Shift Right – shift value placed on stack 2 bits to the

left

BLOCKSIZE EQU 8

MULTIPLYBYFOUR EQU 2

 LOAD PB[0], BLOCKSIZE

 PRIM 0x03, BLOCKSIZE, MULTIPLYBYFOUR

The following examples illustrate the uses of the RET mnemonic.

// Return from function with no Input or Output

RET

// Return from function with two Input and no Output bytes

RET 2

// Return from function with no Input and three Output bytes

RET , 3

// Return from function with two Input and three Output bytes

RET 2, 3

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 35

SETB

This instruction copies the literal byte to either the byte at the top of the stack or the byte held at the
location specified by the label.

Syntax

SETB [label], byte

Remarks

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the byte set will be
that on top of the stack.

The SETB instruction overwrites the top stack byte, it does not push a value onto the stack. So if there is no
byte on the stack, the AAM will abend if the SETB instruction is executed.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example sets the byte at the top of the stack to 10

SETB ,10

The following example sets the byte held at pSW2 to 0

pSW2 EQU PT[-1]

SETB pSW2,0

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

36 MULTOS is a registered trademark of MULTOS Limited.

SETW

This instruction copies the literal word to either the word at the top of the stack or the word held at the
location specified by the label.

Syntax

SETW [label], word

Remarks

If a label is given then the word stored at the label is set to the literal word. The assembler will translate
this into the corresponding register/offset pair during assembly, or alternatively the register/offset pair
may be given explicitly.
If the label is omitted then the literal word is copied to the byte at the top of the stack.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example sets the word held at PT[-4] to 16.

SETW PT[-4], 16

The following example is the same as the previous example, but as PT[-4] is the location of the La value it
uses a label to identify the variable pLa instead of using a register/offset pair directly.

pLa EQU PT[-4]

SETW pLa, 16

The following example sets the word at the top of the stack.

SETW , 0xFFFF

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 37

STACK

This instruction allows bytes or words to be pushed onto and popped from the stack.

Syntax

PUSHZ block_length // Pushs block of zeros onto the stack

PUSHB byte // Pushes a byte onto the stack

PUSHW word // Pushes a word onto the stack

POPN block_length // Pops block of bytes from the stack

POPB // Pops a byte from the stack

POPW // Pops a word from the stack

Remarks

The action performed by this instruction depends upon the mnemonic used. There are six operations:

• Push Zero (PUSHZ): A block of zeros is pushed onto the stack. The block_length value is specified
using a single byte. Therefore, the maximum length of a block is 255 bytes.

• Push Byte (PUSHB): A literal byte is pushed onto the stack

• Push Word (PUSHW): A literal word is pushed onto the stack

• Pop Byte-block (POPN): A block of bytes is popped from the stack. The block_length value is
specified using a single byte. Therefore, the maximum length of a block is 255 bytes.

• Pop Byte (POPB): A single byte is popped from the stack.

• Pop Word (POPW): A single word, two bytes, is popped from the stack.

If an attempt is made to pop more bytes off the stack than are present on the stack then the MULTOS
device will abend. Likewise, if there is insufficient space in dynamic memory to hold any bytes pushed
onto the stack then the MULTOS device will also abend.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

38 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example uses the different mnemonics to manipulate the stack. The stack is empty at the
start.

PUSHZ 3 //Stack = 00,00,00

PUSHB 10 //Stack = 00,00,00,0A

PUSHW 0x1234 //Stack = 00,00,00,0A,12,34

POPN 3 //Stack = 00,00,00

POPB //Stack = 00,00

POPW //Stack = EMPTY

STORE

This instruction moves a block of bytes from the stack to a given location.

Syntax

STORE [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes.

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the data of size
block_length on the stack will be moved to the byte block below that on the top of the stack..

This instruction will pop the byte-block from the stack; i.e., the operation is a move and not a copy.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example copies the first eight bytes of the public area to the first eight bytes of the static
area.

LOAD PB[0], 8

STORE SB[0], 8

The next example illustrates how the instruction functions when the label is not specified.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 39

PUSHW 0x0000 // Stack = 00,00

PUSHW 0x1234 // Stack = 00,00,12,34

STORE , 2 // Stack = 12,34

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

40 MULTOS is a registered trademark of MULTOS Limited.

STOREI

This instruction moves a block of bytes from the stack to a given location using indirect addressing.

Syntax

STOREI [label], length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes.

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the destination
address will be taken to be the two bytes below the block of size block_length on the top of the stack. In
other words, the destination address must be placed onto the stack followed by the bytes to move.

This instruction will pop the byte-block from the stack; i.e., the operation is a move and not a copy.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 41

Example

The following example copies the bytes 0x12 and 0x34 to the base of static, which has an address of 0.

LOADA SB[0] // Stack = 00,00

PUSHW 0x1234 // Stack = 00,00,12,34

STOREI , 2 // Stack = 00,00

The following example copies the word 0x1234 to the memory location in sValue as calculated using the
INDEX instruction.

dAddr DYNAMIC WORD

sValue STATIC WORD = 0xABCD, 0x4567, 0x0000, 0xEF89

 // use INDEX to get address of 3rd word in sValue array

 PUSHB 2

 INDEX sValue, 2

 // move address to session variable

 STORE dAddr, 2

 // remove pushed byte

 POPB

 // now push literal word and store at calculated address

 PUSHW 0x1234 // Stack = 12,34

 STOREI sAddr,2 // Stack = {empty}

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

42 MULTOS is a registered trademark of MULTOS Limited.

SUBB

This instruction subtracts the literal byte from either the byte at the top of the stack or the byte held at the
location specified by the label.

Syntax

SUBB [label], byte

Remarks

The result of the operation is written to either the byte at the top of the stack or, if specified, the label.

If a label is specified then the literal byte is subtracted from the byte held at the label. The assembler will
translate the label into the corresponding register/offset pair during assembly, or alternatively the
register/offset pair may be given explicitly. If the label is omitted then the literal byte is subtracted from
the byte at the top of the stack.

The result of the subtraction updates the Condition Code Register. the carry flag is set if the result of the
operation would be less than zero, while the zero flag is set if the result of the operation is equal to zero.
For example,

0x10 - 0x20 = 0xF0; Carry is set and Zero is reset
0x10 - 0x10 = 0x00; Carry is reset and Zero is set
0x20 - 0x10 = 0x10; Carry and Zero are reset

Condition Code

 C V N Z

- - - - X - - X

C Set if a borrow occurs, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Example

The following line subtracts 32 from the tenth byte of the Static Area.

SUBB SB[9] ,32

The following example is similar to the previous example, but uses a label to identify the variable instead of
using a register/offset pair directly.

myNum1 STATIC BYTE

SUBB myNum1, 32

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 43

SUBN

This instruction subtracts the byte-block at the top of the stack from a byte-block specified by the label. If
the label is omitted then the top two byte-blocks on the stack are used.

Syntax

SUBN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then both operands of
size block_length will be taken from the stack..

The result of the subtraction is written to the lower byte-block on the stack, or if specified, the byte-block
held at the label. The byte-block at the top of the stack is not changed by this instruction.

The subtraction of the byte-blocks is performed as though the entire byte-block represents a single
unsigned number and bits may be carried over from the least significant bytes to the most significant bytes.

The result of the addition updates the Condition Code Register. The carry flag is set if the result of the
operation would be less than zero, while the zero flag is set if the result of the operation is equal to zero.
For example,

0x20000000 - 0x20000000 = 0x00000000; Carry is reset and Zero is set
0x20000000 - 0x40000000 = 0xE0000000; Carry is set and Zero is reset
0x20000000 - 0x100000000 = 0x10000000; Carry and Zero are reset

The operation will work if the two blocks overlap.

Condition Code

 C V N Z

- - - - X - - X

C Set if a borrow occurs, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

44 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example subtracts the four bytes at the top of the stack from the four bytes at the base of
the static area.

SUBN SB[0],4

The following example is similar to as the previous example, but uses a label to identify the variable instead
of using a register/offset pair directly.

myVar STATIC BYTE 4

SUBN myVar,4

The following example subtracts the four bytes at the top of the stack from the four bytes immediately
below them on the stack.

//Stack = BB,BB,BB,BB,11,11,11,11

 SUBN ,4

//Stack = AA,AA,AA,AA,11,11,11,11

The following example performs a subtraction on the stack and then subtracts the result from a variable
held in the static segment.

sResult STATIC Word = 0x3000

 PUSHW 0x00FF //Stack = 21,00

 PUSHW 0x1001 //Stack = 21,00,10,01

 SUBN , 2 //Stack = 10,FF,10,01

 POPW //Stack = 10,FF

 SUBN sResult,2 //sResult now equals 0x1F01

 POPW //Leave stack as found.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 45

SUBW

This instruction subtracts the literal word from either the word at the top of the stack or the word held at
the location specified by the label.

Syntax

SUBW [label], word

Remarks

The result of the operation is written to either the word at the top of the stack or, if specified, the label.

If a label is specified then the literal word is subtracted from the word held at the label. The assembler will
translate the label into the corresponding register/offset pair during assembly, or alternatively the
register/offset pair may be given explicitly. If the label is omitted then the literal word is subtracted from
the word at the top of the stack.

The result of the subtraction updates the Condition Code Register. The carry flag is set if the result of the
operation is less than zero and the zero flag is set if the result of the operation is equal to zero. For
example,

0x1000 - 0x2000 = 0xF000; Carry is set and Zero is reset
0x1000 - 0x1000 = 0x0000; Carry is reset and Zero is set
0x2000 - 0x1000 = 0x1000; Carry and Zero are reset

Condition Code

 C V N Z

- - - - X - - X

C Set if a borrow occurs, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Example

The following line subtracts 0x2020 from the word at the bottom of the Static Segment.

SUBB SB[0], 0x2020

The following example is similar to the previous example, but uses a label to identify the variable instead of
using a register/offset pair directly.

myNum1 STATIC WORD

SUBW myNum1, 0x2020

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

46 MULTOS is a registered trademark of MULTOS Limited.

SYSTEM

With the exception of NOP, system instructions perform an operation relating to setting the response that
the application will return to the IFD and exiting an application.

Syntax

NOP

SETSW SW1,SW2

SETLA La

SETSWLA SW1,SW2,La

EXIT

EXITSW SW1,SW2

EXITLA La

EXITSWLA SW1,SW2,La

Remarks

The notation SW1 refers to the most significant byte and SW2 refers to the least significant byte of the
status word. The notation La corresponds to the actual length of response data value.

When a MEL application exits the response returned to the terminal consists of two bytes, the Status Word.
The default value is ‘0x9000’, which indicates successful execution of an application function.

An application may also return response data back to the IFD. If data is to be sent, then the La, Length of
Actual Response, should be set to the number of bytes that are to be returned. The default value is 0x00.

The operation of this instruction depends upon the mnemonic used.

Operation Description
NOP No operation
SETSW Set the status word
SETLA Set the length of response data returned
SETSWLA Set the status word and length of response data returned
EXIT Exit from the application
EXITSW Set the status word and exit from the application
EXITLA Set the length of response data returned and exits from the application
EXITSWLA Set the status word, length of response data and exit from the application.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 47

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following extended example shows how an application could handle an APDU command INS. Note the
use of EXITSW to exit the application and return the relevant status word.

pINS EQU PT[-12] // pINS is a label for Public Top - 12

chkCLA90 // Code block chkCLA90

 LOAD pINS,1 // Load the 1 byte instruction to stack

 CMPB ,0x10 // Compare with the hex value 0x10

 BEQ cmd10 // If equal jump to code block cmd10

 CMPB ,0x20 // Compare with the hex value 0x20

 BEQ cmd20 // If equal branch to code block cmd20

UnrecINS // Instruction not recognised by the class

 EXITSW 0x6D,0x00 // Set SW1 to 0x6D and Sw2 to 0x00

Continuing from the previous example, the code snippet below illustrates a memory copy. Note that
instruction EXITLA uses the default status word and set the actual length of response data.

cmd10 // Code block cmd10

 // Pop pCLA & pINS bytes off stack (1 WORD)

 POPW

 // assume sData of size 8 exists

 // copy to public using memory copy fixed length

 LOADA PB[0]

 LOADA sData

 PRIM 0x0E, 8

 // default 9000 SW used and LA set

 EXITLA 8

cmd20 // Code block cmd20

 POPW // Pop pCLA & pINS bytes off stack

 // Command processing for Instruction 20

 EXIT // Exit the application

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

48 MULTOS is a registered trademark of MULTOS Limited.

TESTN

This instruction compares a byte-block with zero and sets the zero flag in CCR accordingly.

Syntax

TESTN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the data of size
block_length on the stack will be tested.

The result of the operation updates the Condition Code Register. The zero flag is set if the operation is
performed a byte-block with a value of zero. For example,

TESTN 0x000000; Zero is set
TESTN 0x000010; Zero is cleared

The TESTN instruction does not modify the carry flag of the condition register.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the byte-block equals zero, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 49

Example

The following example tests the four bytes at the top of the stack to determine if they are equal to zero.

TESTN SB[0], 4

The following example is the same as the previous example, but uses a label to identify the variable instead
of using a register/offset pair directly.

myVar STATIC BYTE 4

TESTN myVar, 4

The following example tests the four bytes at the top of the stack then the top five bytes of the stack to
determine if they are all equal to zero.

// Stack = FF,00,00,00,00

TESTN , 4 //CCR Z = Set

TESTN , 5 //CCR Z = Cleared

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

50 MULTOS is a registered trademark of MULTOS Limited.

XORN

This instruction performs a bit-wise XOR on two bye blocks of the same size.

Syntax

XORN [label], block_length

Remarks

The block_length value is specified using a single byte. Therefore, the maximum length of a block is 255
bytes

The label, if present, may be either a named memory location, which the assembler will translate into a
register / offset pair, or an explicit register / offset pair. If a label is not specified, then the both operands
of size block_length are taken from the stack.

The result of the XOR operation is written to the lower byte-block on the stack, or if specified, the byte-
block held at the label. The byte-block at the top of the stack is not changed by this instruction.

The result of the operation updates the zero flag condition code register. The flag is set if the result of the
operation is equal to zero. For example,

0xF0F0 XOR 0xF0F0 = 0x0000; Zero is set
0xF0F0 XOR 0x00FF = 0xF00F; Zero is reset

The operation will work if the two blocks overlap

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 51

Example

The following example performs a bit-wise XOR operation on the four bytes at the top of the stack with the
four bytes at the base of the static area.

XORN SB[0], 4

The following example is similar to the previous example, but uses a label to identify the variable instead of
using a register/offset pair directly.

myVar STATIC BYTE 4

XORN myVar,4

The following example pushes two words onto the stack and performs a bit-wise XOR on them before
performing a two byte bit-wise XOR with a static variable. Note the way in which the stack and static
variable change during the XORN operations.

sResult STATIC WORD = 0x1111

 PUSHW 0xFF00 // Stack = FF,00

 PUSHW 0x1234 // Stack = FF,00,12,34

 XORN , 2 // Stack = ED,34,12,34

 XORN sResult,2 // sResult = FC, 25

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

52 MULTOS is a registered trademark of MULTOS Limited.

Primitives
MULTOS defines built-in functions, known as primitives, are available for use by any application. The
MULTOS specification states whether a primitive is mandatory or optional for implementation and a type
approved MULTOS implementation must comply with a stated specification. Each sub-section lists the
availability and mandatory / optional status of the primitive. Unavailable primitives are identified thus, ,
optional are identified thus, , and available are identified thus, .

Deprecated primitives, marked, should no longer be used in new applications because either a) they
have been superseded by a higher level primitive or b) are little used; they are earmarked for removal in
future releases.

As mentioned in the introduction, for MULTOS step/one products, all primitives available in MULTOS are
considered optional and a developer should check the specific implementation.

The conventions and assumptions given in the introductory section apply here. There are also further
points of note:

• Primitives are divided into sets: Set Zero, Set One, Set Two and Set Three. The classification is
based on the number of arguments included in line with the primitive call. For example, “PRIM
0x01” is part of Set Zero as no arguments are present. However, “PRIM 0x01, 1” is part of Set One
as there is a single in line argument.

• All arguments are 1 byte in size and must be compile time constants. Stack based parameters are
used for variable values used by the primitives.

• The stack operates on the principle “last in, first out”. In the subsections that follow stack usage is
illustrated using diagrams such as:

Stack In OperandA OperandB

Stack Out Output

The Stack In values are referred to as input parameters and those in Stack Out are referred to as
output parameters. The leftmost value is considered to be the first in. In the example above,
OperandA is placed on the stack first followed by OperandB. In terms of addressing the rightmost
value is below dynamic top (DT) and each value can be located using negative offsets. If the size of
the operands is 2 bytes, then OperandA starts at DT[-4] and OperandB at DT[-2].

• The illustrations use relative sizes to show which operand is larger. So, a 1-byte value should be
shown as smaller than a 2-byte value. The actual size of the operands is given in the description
that follows the illustration.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 53

Add BCDN

This primitive adds two stack resident unsigned byte blocks of the same size, where the blocks hold binary
coded decimal (BCD) values. The result is placed on the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds Operand1, Operand2 bytes

PRIM 0x11, length

Arguments

The argument length gives the size of the byte blocks to be added.

Stack Usage

Stack In Operand1 Operand2

Stack Out Output

The parameters Operand1 and Operand2 are both of size length and these are the values that will be
added. The parameter Output is of size length and holds the result of the addition.

Remarks

The value designated by an operand should be in BCD format. If not in BCD format, the processing in
MULTOS device will abnormally end the application.

The CCR C flag is set if the result of the operation is greater than that which can be held in length bytes.
The Z flag is set if the result is zero.

Condition Code

 C V N Z

- - - - X - - X

C Set if a carry occurs, cleared otherwise.
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise.

Primitive set and number

Set one, number 0x11

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

54 MULTOS is a registered trademark of MULTOS Limited.

Examples

The following examples are meant to demonstrate how the primitive may be used as well as indicate how
the CCR C and Z bit flags are set.

// 99 + 1 = 100

PUSHB 0x99 // stack = 0x99

PUSHB 0x01 // stack = 0x99, 0x01

PRIM 0x11, 1 // stack = 0x00 and CCR C and Z are set

 // NOTE: as length = 1, the normal addition

 // result of 100 is truncated to 00

// 99 + 2 = 101

PUSHB 0x99 // stack = 0x99

PUSHB 0x02 // stack = 0x99, 0x02

PRIM 0x11, 1 // stack = 0x01 and CCR C set and Z cleared

 // NOTE: as length = 1, the normal addition

 // result of 101 is truncated to 01

// 101 + 150 = 251

PUSHW 0x0101 // stack = 0x01, 0x01

PUSHW 0x0150 // stack = 0x01, 0x01, 0x01, 0x50

PRIM 0x11, 2 // stack = 0x02, 0x51 both CCR C and Z are cleared

 // NOTE: as length = 2, the normal addition

 // result of 251 is expressed as 0251

// 0 + 0 = 0

PUSHW 0x0000 // stack = 0x00, 0x00

PUSHW 0x0000 // stack = 0x00, 0x00, 0x00, 0x00

PRIM 0x11, 2 // stack = 0x00, 0x00 and CCR C cleared, Z set

 // NOTE: as length = 2, the normal addition

 // result of 0 is expressed as 0000

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 55

AES ECB Decipher

This primitive performs AES ECB Decipher on a sixteen byte block of memory in accordance with [FIPS197].

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD6

Arguments

None.

Stack Usage

Stack In KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

The 2 byte parameter KeyAddr is the starting address of the AES key to be used.
The 1 byte parameter KeyLen is the length in bytes of the AES key at address KeyAddr.
The 2 byte parameter OutputAddr is the starting address of the resultant 16-bytes of plaintext.
The 2 byte parameter InputAddr is the starting address of the 16-bytes of ciphertext.

Remarks

This primitive performs the AES ECB decipher operation on a 16-byte block of memory. The AES key is held
in a block of length KeyLen.

Valid key lengths are 16, 24 and 32 bytes.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input.

This primitive is only available to an application if “Strong Cryptography” is set on in the application’s
access_list when loaded.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

56 MULTOS is a registered trademark of MULTOS Limited.

N Unchanged
Z Unchanged

Primitive set and number

Set one, number 0xD6

Example

The following example declares 16 bytes of static memory to hold the 16 byte (128-bit) length AES Key, the
ciphertext is held as session data, while the resulting plaintext will be written to public. The address for
each of these is loaded onto the stack and the AES Decipher primitive is called.

prmAESDecipher EQU 0xD6

KEYLEN EQU 16

sKey STATIC BYTE 16 =

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D

,0x0E,0x0F,0x10

dCiphertext DYNAMIC BYTE 16

pPlaintext PUBLIC BYTE 16

 LOADA sKey

 PUSHB KEYLEN

 LOADA pPlaintext

 LOADA dCiphertext

 PRIM prmAESDecipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 57

AES ECB Encipher

This primitive performs AES ECB Encipher on a sixteen byte block of memory in accordance with [FIPS197].

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD7

Arguments

None.

Stack Usage

Stack In KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

The 2 byte parameter KeyAddr is the starting address of the AES key to be used.
The 1 byte parameter KeyLen is the length in bytes of the AES key at address KeyAddr.
The 2 byte parameter OutputAddr is the starting address of the resultant 16-bytes of ciphertext.
The 2 byte parameter InputAddr is the starting address of the 16-bytes of plaintext.

Remarks

This primitive performs the AES ECB encipher operation on a 16-byte block of memory. The AES key is held
in a block of length KeyLen.

Valid key lengths are 16, 24 and 32 bytes.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input.

This primitive is only available to an application if “Strong Cryptography” is set on in the application’s
access_list when loaded.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

58 MULTOS is a registered trademark of MULTOS Limited.

Z Unchanged

Primitive Set and Number

Set zero, number 0xD7

Example

The following example declares 24 bytes of static memory to hold the 24-byte (192-bit) AES Key, the
plaintext is held as session data, while the resulting ciphertext will be written to public. The address for
each of these is loaded onto the stack and the AES Encipher primitive is called.

prmAESEncipher EQU 0xD7

KEYLEN EQU 24

sKey STATIC BYTE 24 =

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D

,0x0E,0x0F,0x10, 0x11, 0x12, 0x13, 0x14, 0x15, x016, 0x17, 0x18

dPlaintext DYNAMIC BYTE 16

pCiphertext PUBLIC BYTE 16

 LOADA sKey

 PUSHB KEYLEN

 LOADA pPlaintext

 LOADA dCiphertext

 PRIM prmAESEncipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 59

Bit Manipulate Byte

This primitive performs bit-wise operations on the top byte of the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds ByteIn parameter bytes

PRIM 0x01, Option, MaskByte

Arguments

The argument Option is a bitmap controlling what logical operation is performed and MaskByte is a literal
byte holding the mask to use for operation.

Stack Usage

Stack In ByteIn

Stack Out ByteOut

The 1-byte parameter ByteIn is the byte value that will be manipulated according to the binary operation
specified by Option using the literal MaskByte as the second operand. The
1-byte value ByteOut depends on the Options argument. It may be the original byte or the result of the
logical operation.

Remarks

Depending on the Option argument this primitive performs one of four binary logical operations. They are:

• AND: which returns a true bit only if both corresponding bits in the input and mask are true

• OR: which returns a true bit if either of the corresponding bits in the input or mask are true

• XOR: This is a logical Exclusive OR operation, which returns a true bit only if either of the
corresponding bits in the input or mask are true, but false if both are true

• EQU: This logical operation is also known as a Exclusive NOR (XNOR), which returns a true bit only if
both corresponding bits in the input and mask are of the same value

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

60 MULTOS is a registered trademark of MULTOS Limited.

The following table shows how the Option argument is coded. The numbers in the top row correspond to
the bit offset, where the most significant bit occupies offset 7.

7 6 5 4 3 2 1 0 Comments
0 - - - - - - - Do not modify ByteIn
1 - - - - - - - Overwrite ByteIn with result of operation
- 0 0 0 0 0 - - Any other values are undefined
- - - - - - 0 0 Calculate ByteIn XOR MaskByte
- - - - - - 0 1 Calculate ByteIn EQU MaskByte
- - - - - - 1 0 Calculate ByteIn OR MaskByte
- - - - - - 1 1 Calculate ByteIn AND MaskByte

Regardless of whether the ByteIn value is modified, the Condition Code Register reflects the result of the
operation.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Primitive Set and Number

Set two, number 0x01

Example

The following table lists acceptable values for the Option argument.

Option
Value

Interpretation

0x00 ByteIn remains unchanged after XOR; i.e. ByteOut = ByteIn
0x01 ByteIn remains unchanged after EQU; i.e. ByteOut = ByteIn
0x02 ByteIn remains unchanged after OR; i.e. ByteOut = ByteIn
0x03 ByteIn remains unchanged after AND; i.e. ByteOut = ByteIn
0x80 ByteOut holds result of ByteIn XOR MaskByte
0x81 ByteOut holds result of ByteIn EQU MaskByte
0x82 ByteOut holds result of ByteIn OR MaskByte
0x83 ByteOut holds result of ByteIn AND MaskByte

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 61

The following code snippet uses the primitive to ascertain the value of a bit flag held at bit offset six. The
primitive number and option value have been defined using the assembler directive EQU, which is similar
in function to the C expression #define and should not be confused with the exclusive NOR operation.

prmBitManipByte EQU 0x01

optANDwithResult EQU 0x83

flagValueSet EQU 0x40 // bit 6 set

dynFlags DYNAMIC BYTE 1

 LOAD dynFlags, 1

 PRIM prmBitManipByte, optANDwithResult, flagValueSet

 CMPB , flagValueSet

 POPB

 BEQ label_flag_set

The next example tests the value of the flag variable and will set bit 0 if it is equal to an expected value.

optEQUnoResult EQU 0x01

optXORwithResult EQU 0x80

flagExpectedValue EQU 0x5A

flagEVCheckOK EQU 0x01

 LOAD dynFlags, 1

 PRIM prmBitManipByte, optEQUnoResult, flagExpectedValue

 BNE label_expected_value_check_failed

 // use primitive again to update flag value on stack

 PRIM prmBitManipByte, optXORwithResult, flagEVCheckOK

 // move new value back to session variable

 STORE dynFlags, 1

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

62 MULTOS is a registered trademark of MULTOS Limited.

Bit Manipulate Word

This primitive performs bit-wise operations on the top word of the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds WordIn parameter bytes

PRIM 0x01, Option, MaskWord

Arguments

The argument Option is a bitmap controlling what logical operation is performed and MaskWord is a literal
word holding the mask to use for operation.

Stack Usage

Stack In WordIn

Stack Out WordOut

The 2-byte parameter WordIn is the value that will be manipulated according to the binary operation
specified by Option using the literal MaskWord as the second operand. The 2-byte value WordOut depends
on the Options argument. It may be the original word or the result of the logical operation.

Remarks

Depending on the Option argument this primitive performs one of four binary logical operations. They are:

• AND: which returns a true bit only if both corresponding bits in the input and mask are true

• OR: which returns a true bit if either of the corresponding bits in the input or mask are true

• XOR: This is a logical Exclusive OR operation, which returns a true bit only if either of the
corresponding bits in the input or mask are true, but false if both are true

• EQU: This logical operation is also known as a Exclusive NOR (XNOR), which returns a true bit only if
both corresponding bits in the input and mask are of the same value

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 63

The following table shows how the Option argument is coded. The numbers in the top row correspond to
the bit offset, where the most significant bit occupies offset 7.

7 6 5 4 3 2 1 0 Comments
0 - - - - - - - Do not modify WordIn
1 - - - - - - - Overwrite WordIn with result of operation
- 0 0 0 0 0 - - Any other values are undefined
- - - - - - 0 0 Calculate WordIn XOR MaskWord
- - - - - - 0 1 Calculate WordIn EQU MaskWord
- - - - - - 1 0 Calculate WordIn OR MaskWord
- - - - - - 1 1 Calculate WordIn AND MaskWord

Regardless of whether the WordIn value is modified, the Condition Code Register reflects the result of the
operation.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if result is zero, cleared otherwise

Primitive Set and Number

Set three, number 0x01

Example

The following table lists acceptable values for the Option argument.

Option
Value

Interpretation

0x00 WordIn remains unchanged after XOR; i.e. WordOut = WordIn
0x01 WordIn remains unchanged after EQU; i.e. WordOut = WordIn
0x02 WordIn remains unchanged after OR; i.e. WordOut = WordIn
0x03 WordIn remains unchanged after AND; i.e. WordOut = WordIn
0x80 WordOut holds result of WordIn XOR MaskWord
0x81 WordOut holds result of WordIn EQU MaskWord
0x82 WordOut holds result of WordIn OR MaskWord
0x83 WordOut holds result of WordIn AND MaskWord

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

64 MULTOS is a registered trademark of MULTOS Limited.

The following code snippet uses the primitive to set the four least significant bytes of the word on top of
the stack. The primitive number and option value have been defined using the assembler directive EQU,
which is similar in function to the C expression #define and should not be confused with the exclusive NOR
operation.

prmBitManipByte EQU 0x01

optORwithResult EQU 0x82

dynFlags DYNAMIC WORD

 LOAD dynFlags, 2

 PRIM prmBitManipByte, optORwithResult, 0x000F

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 65

Block Decipher

This primitive performs a Block Decipher on a block of memory. The algorithms that may be used are DES,
Triple DES, SEED and AES in ECB and CBC modes of operation.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDA, AlgorithmID, ChainingMode

Arguments

The 1-byte argument AlgorithmID indicates the type of decipher algorithm to be used.

AlgorithmID Algorithm 4.2 4.3 4.4

0x03 DES [FIPS46-3] Optional Mandatory Mandatory

0x04 Triple DES [FIPS46-3] Optional Mandatory Mandatory

0x05 SEED [KISA] Optional Optional* Mandatory

0x06 AES [FIPS197] Optional Optional* Mandatory

*mandatory if the algorithm is supported by an implementation

The 1-byte argument Chaining Mode indicates the block cipher mode of operation to be used.

ChainingMode
0x01 ECB
0x02 CBC

0x03 CTR

0x04 CFB

Stack Usage

ECB mode

Stack In InputLen KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

- The 2-byte parameter InputLen specifies the number of bytes to decipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key(s)
at this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

66 MULTOS is a registered trademark of MULTOS Limited.

• SEED: one 16-byte key.

• AES : one 16, 24 or 32 byte AES key.
- The 1-byte parameter KeyLen is the length of the key(s) to be used.
- The 2-byte parameter OutputAddr is the start address of the resultant plaintext.
- The 2-byte parameter InputAddr is the start address of the ciphertext to be deciphered.

CBC mode

CBC mode requires the addition of an Initialisation Vector of length equal to the block size for the selected
algorithm. The stack for this mode is:

Stack In IVLen IVAddr InputLen KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

- The 1-byte parameter IVLen specifies the size of the Initialisation Vector.
- The 2-byte parameter IVAddr is the address of the Initialisation Vector. The size of the Initialisation
Vector depends upon the specified algorithm, as follows.

• DES: 8 bytes.

• Two key triple DES: 8 bytes.

• Three key triple DES: 8 bytes.

• SEED: 16 bytes.

• AES: 16 bytes.

- The 2-byte parameter InputLen specifies the number of bytes to decipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key at
this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES : one 16, 24 or 32 byte AES key.

- The 1 byte parameter KeyLen is the length in bytes of the key at address KeyAddr.
- The 2-byte parameter OutputAddr is the starting address of the resultant plaintext.
- The 2-byte parameter InputAddr is the start address of the ciphertext to be deciphered.

CTR chaining mode

Stack In IVLen IVAddr InputLen KeyAddr KeyLen Output
Addr

InputA
ddr

Counter
Width

Stack Out {empty}

CTR mode is specified in ISO/IEC-10116.
- The 1-byte parameter IVLen specifies the size of the Initialisation Vector.
- The 2-byte parameter IVAddr is the address of the Initialisation Vector. The size of the Initialisation
Vector depends upon the specified algorithm, as follows.

• DES: 8 bytes.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 67

• Two key triple DES: 8 bytes.

• Three key triple DES: 8 bytes.

• SEED: 16 bytes.

• AES: 16 bytes.

- The 2-byte parameter InputLen specifies the number of bytes to decipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key at
this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES: one 16, 24 or 32 byte AES key.

- The 1 byte parameter KeyLen is the length in bytes of the key at address KeyAddr.
- The 2-byte parameter OutputAddr is the starting address of the resultant plaintext.
- The 2-byte parameter InputAddr is the start address of the ciphertext to be deciphered.
- The 1-byte parameter CounterWidth refers to the width of the counter to be used. This can be upto the
IVLen.

Examples of different counter widths:
AES CTR mode, CounterWidth = 4, IVLen = 16.
IV = FFEEDDCCBBAA99887766554433221100
Round 1 IV FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Round 2 IV FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 01

Round 3 IV FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 02

AES CTR mode, CounterWidth = 4, IVLen = 16.
IV = FFEEDDCCBBAA998877665544FFFFFF
Round 1 IV FF EE DD CC BB AA 99 88 77 66 55 44 FF FF FF FF

Round 2 IV FF EE DD CC BB AA 99 88 77 66 55 44 00 00 00 00

Round 3 IV FF EE DD CC BB AA 99 88 77 66 55 44 00 00 00 01

AES CTR mode, CounterWidth = 16, IVLen = 16.
IV = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Round 1 IV FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Round 2 IV 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Round 3 IV 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

CFB mode

CFB mode requires the addition of an Initialisation Vector of length equal to the block size for the selected
algorithm. The stack for this mode is:

Stack In IVLen IVAdd
r

InputL
en

KeyAddr KeyLen Output
Addr

Input
Addr

FeedbackSiz
e

Stack Out {empty}

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

68 MULTOS is a registered trademark of MULTOS Limited.

- The 1-byte parameter IVLen specifies the size of the Initialisation Vector.
- The 2-byte parameter IVAddr is the address of the Initialisation Vector. The size of the Initialisation
Vector depends upon the block length of the specified algorithm, as follows.

• DES: 8 bytes.

• Two key triple DES: 8 bytes.

• Three key triple DES: 8 bytes.

• SEED: 16 bytes.

• AES: 16 bytes.

- The 2-byte parameter InputLen specifies the number of bytes to decipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key at
this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES: one 16, 24 or 32 byte AES key.

- The 1 byte parameter KeyLen is the length in bytes of the key at address KeyAddr.
- The 2-byte parameter OutputAddr is the starting address of the resultant plaintext.
- The 2-byte parameter InputAddr is the start address of the ciphertext to be deciphered.
- The 1-byte parameter FeedbackSize refers to the number of bits to be used as feedback. This can be upto
the block length of the algorithm.

Remarks

This primitive performs the block decipher operation on a block of memory of InputLen bytes. The
algorithm used may be DES, Two Key Triple DES, Three Key Triple DES, SEED and 128/192/256-bit Key AES.
The key is held in a block of the appropriate length for the algorithm.

In ECB and CBC chaining mode, DES algorithms require that the ciphertext length is a multiple of 8 bytes
and the SEED and AES-128/192/256 algorithms require that the ciphertext is a multiple of 16 bytes. If the
ciphertext length does not meet these restrictions then the primitive will abend. Padding is not removed
during the block decipher operation.

In CTR and CFB mode there is no restriction that the plaintext be a multiple of the algorithms block length.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input. However, the output plaintext cannot partially overlap the
input ciphertext. If the primitive is called with partially overlapping input and output memory areas then it
abends. If an Initialisation Vector is used then this can be at any segment address, including in the input
ciphertext or output plaintext memory areas.

Refer to the relevant MULTOS Implementation Report for the platform you are developing on as not all
combinations of algorithm and chaining modes may be supported by the platform.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 69

CTR mode may not be available for all algorithms and the implementation may restrict the maximum
CounterSize supported. Refer to the MULTOS Implementation Report for the platform.

This primitive is only available to an application if “Strong Cryptography” are set on in the application’s
access_list when loaded.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged.

Primitive Set and Number

Set two, number 0xDA

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

70 MULTOS is a registered trademark of MULTOS Limited.

Block Encipher

This primitive performs a Block Encipher on a block of memory. The algorithms that may be used are DES,
Triple DES, SEED and AES in ECB and CBC modes of operation.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDB, AlgorithmID, ChainingMode

Arguments

The 1-byte argument AlgorithmID indicates the type of encipher algorithm to be used.

AlgorithmID Algorithm 4.2 4.3 4.4 / 4.5

0x03 DES [FIPS46-3] Optional Mandatory Mandatory

0x04 Triple DES [FIPS46-3] Optional Mandatory Mandatory

0x05 SEED [KISA] Optional Optional* Optional*

0x06 AES [FIPS197] Optional Optional* Optional*

*mandatory if the algorithm is supported by an implementation

The 1-byte argument Chaining Mode indicates the block cipher mode of operation to be used (NOTE:
please refer to the Implementation Report for the device you are using to find out which modes are
supported).

ChainingMode
0x01 ECB
0x02 CBC

0x03 CTR

0x04 CFB

Stack Usage

ECB mode

Stack In InputLen KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

- The 2-byte parameter InputLen specifies the number of bytes to encipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key(s)
at this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 71

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES: one 16, 24 or 32 byte AES key.

- The 1-byte parameter KeyLen is the length of the key(s) to be used.
- The 2-byte parameter OutputAddr is the start address of the resultant ciphertext.
- The 2-byte parameter InputAddr is the start address of the plaintext to be enciphered.

CBC chaining mode

Stack In IVLen IVAddr InputLen KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

- The 1-byte parameter IVLen specifies the size of the Initialisation Vector.
- The 2-byte parameter IVAddr is the address of the Initialisation Vector. The size of the Initialisation
Vector depends upon the specified algorithm, as follows.

• DES: 8 bytes.

• Two key triple DES: 8 bytes.

• Three key triple DES: 8 bytes.

• SEED: 16 bytes.

• AES: 16 bytes.

- The 2-byte parameter InputLen specifies the number of bytes to encipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key at
this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES : one 16, 24 or 32 byte AES key.

- The 1 byte parameter KeyLen is the length in bytes of the key at address KeyAddr.
- The 2-byte parameter OutputAddr is the starting address of the resultant ciphertext.
- The 2-byte parameter InputAddr is the start address of the plaintext to be enciphered.

CTR chaining mode

Stack In IVLen IVAddr InputLen KeyAddr KeyLe
n

Output
Addr

Input
Addr

Counter
Width

Stack Out {empty}

CTR mode is specified in ISO/IEC-10116.
- The 1-byte parameter IVLen specifies the size of the Initialisation Vector.
- The 2-byte parameter IVAddr is the address of the Initialisation Vector. The size of the Initialisation
Vector depends upon the specified algorithm, as follows.

• DES: 8 bytes.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

72 MULTOS is a registered trademark of MULTOS Limited.

• Two key triple DES: 8 bytes.

• Three key triple DES: 8 bytes.

• SEED: 16 bytes.

• AES: 16 bytes.

- The 2-byte parameter InputLen specifies the number of bytes to encipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key at
this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES: one 16, 24 or 32 byte AES key.

- The 1 byte parameter KeyLen is the length in bytes of the key at address KeyAddr.
- The 2-byte parameter OutputAddr is the starting address of the resultant ciphertext.
- The 2-byte parameter InputAddr is the start address of the plaintext to be enciphered.
- The 1-byte parameter CounterWidth refers to the width of the counter to be used. This can be upto the
IVLen.

Examples of different counter widths:
AES CTR mode, CounterWidth = 4, IVLen = 16.
IV = FFEEDDCCBBAA99887766554433221100
Round 1 IV FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Round 2 IV FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 01

Round 3 IV FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 02

AES CTR mode, CounterWidth = 4, IVLen = 16.
IV = FFEEDDCCBBAA998877665544FFFFFF
Round 1 IV FF EE DD CC BB AA 99 88 77 66 55 44 FF FF FF FF

Round 2 IV FF EE DD CC BB AA 99 88 77 66 55 44 00 00 00 00

Round 3 IV FF EE DD CC BB AA 99 88 77 66 55 44 00 00 00 01

AES CTR mode, CounterWidth = 16, IVLen = 16.
IV = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Round 1 IV FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Round 2 IV 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Round 3 IV 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

CFB chaining mode

Stack In IVLen IVAdd
r

InputL
en

KeyAddr KeyLen Output
Addr

Input
Addr

FeedbackSiz
e

Stack Out {empty}

- The 1-byte parameter IVLen specifies the size of the Initialisation Vector.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 73

- The 2-byte parameter IVAddr is the address of the Initialisation Vector. The size of the Initialisation
Vector depends upon the block length of the specified algorithm, as follows.

• DES: 8 bytes.

• Two key triple DES: 8 bytes.

• Three key triple DES: 8 bytes.

• SEED: 16 bytes.

• AES: 16 bytes.

- The 2-byte parameter InputLen specifies the number of bytes to encipher.
- The 2-byte parameter KeyAddr is the address of the key(s) to be used. The size and format of the key at
this address depends upon the specified algorithm, as follows.

• DES: one 8-byte DES key.

• Two key triple DES: two 8-byte DES keys. The first key is located at address KeyAddr and the second
key is located at address KeyAddr+8.

• Three key triple DES: three 8-byte DES keys. The first key is located at address KeyAddr and the
second key is located at address KeyAddr+8 and the third key is located at address KeyAddr+16.

• SEED: one 16-byte key.

• AES: one 16, 24 or 32 byte AES key.

- The 1 byte parameter KeyLen is the length in bytes of the key at address KeyAddr.
- The 2-byte parameter OutputAddr is the starting address of the resultant ciphertext.
- The 2-byte parameter InputAddr is the start address of the plaintext to be enciphered.
- The 1-byte parameter FeedbackSize refers to the number of bits to be used as feedback. This can be upto
the block length of the algorithm.

Remarks

This primitive performs the block encipher operation on a block of memory of InputLen bytes. The
algorithm used may be DES, Two Key Triple DES, Three Key Triple DES, SEED and 128/192/256-bit Key AES.
The key is held in a block of the appropriate length for the algorithm.

In ECB and CBC chaining mode, DES algorithms require that the plaintext length is a multiple of 8 bytes and
the SEED and AES-128/192/256 algorithms require that the plaintext is a multiple of 16 bytes. If the
plaintext length does not meet these restrictions then the primitive will abend.

In CTR and CFB mode there is no restriction that the plaintext be a multiple of the algorithms block length.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input. If an implementation has any restrictions around this then it
will be documented in the [MIR]. If an Initialisation Vector is used then this can be at any segment address,
including in the input plaintext or output ciphertext memory areas.

Refer to the relevant MULTOS Implementation Report for the platform you are developing on as not all
combinations of algorithm and chaining modes may be supported by the platform.

CTR mode may not be available for all algorithms and the implementation may restrict the maximum
CounterSize supported. Refer to the MULTOS Implementation Report for the platform.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

74 MULTOS is a registered trademark of MULTOS Limited.

This primitive is only available to an application if “Strong Cryptography” are set on in the application’s
access_list when loaded.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged.

Primitive Set and Number

Set two, number 0xDB

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 75

Call Codelet

This primitive is used to access a code held in a codelet.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x83

Arguments

None.

Stack Usage

Stack In CodeletID codeAddr

Stack Out LinkageData

The 2-byte CodeletID identifies which codelet to execute, while the 2-byte codeAddr is the start address
within the codelet’s code area at which to start execution. The 6-byte LinkageData field is automatically
handled by the operating system. These values are present so that when the codelet uses the primitive
‘Return from Codelet’ MULTOS can continue the normal execution of the application.

Remarks

This primitive is used to call a codelet that is stored on the MULTOS device. When the codelet is called it is
considered to be part of the executing application’s memory space. Therefore, the codelet is able to read
from and write to any data area of the application’s memory.

The 2-byte codelet ID is a unique MULTOS KMA registered value, which identifies a particular codelet. If a
codelet with ID of 0 is called, the AAM will execute the currently selected application from the code
segment offset specified by the second parameter placed on the stack. Use of this primitive with a codelet
ID which is not stored on the device will result in the abnormal end of application execution.

The value CodeAddr is the code address of the entry point within the Codelet where execution will begin.
Valid Codelet Entry Addresses for the codelet must be obtained from the provider of the codelet.

This primitive is used in conjunction with the ‘Return from Codelet’ primitive. That primitive will return
control to the application code.

Condition Code

 C V N Z

- - - - - - - -

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

76 MULTOS is a registered trademark of MULTOS Limited.

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

set zero, number 0x83

Example

The following example checks that a particular codelet exists and if so proceeds to call the codelet. Note
that the codelet ID used below is fictitious.

prmCallCodelet EQU 0x83

prmQueryCodelet EQU 0x84

CODELETID EQU 0xF1F2

 PUSHW CODELETID

 PRIM prmQueryCodelet

 // CCR Z flag cleared if does not exist

 BEQ warning_CodeletUnsupported

 // otherwise call the codelet from start

 // codelet ID remained on stack

 PUSHZ 2

 PRIM prmCallCodelet

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 77

Call Extension 0,1,2,3,4,5,6

These primitives call an proprietary extension primitive.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x80, PrimType_LSB, PrimType_MSB, ParamByte

PRIM 0x81, PrimType_LSB, PrimType_MSB, ParamByte

PRIM 0x82, PrimType_LSB, PrimType_MSB, ParamByte

PRIM 0x83, PrimType_LSB, PrimType_MSB, ParamByte

PRIM 0x84, PrimType_LSB, PrimType_MSB, ParamByte

PRIM 0x85, PrimType_LSB, PrimType_MSB, ParamByte

PRIM 0x86, PrimType_LSB, PrimType_MSB, ParamByte

Arguments

The 1-byte arguments PrimType_MSB and PrimType_LSB represent the most significant byte and least
significant byte of the primitive type. The 1-byte argument ParamByte is an optional parameter that may
be passed to the primitive.

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

These primitives are intended to permit up to six implementors to introduce proprietary extension
primitives; i.e., primitives that are not described in this document. As these are proprietary the exact usage
of these primitives are dependent upon the implementation.

MAOSCO will assign each MULTOS implementor one of the Call Extension Primitive Numbers, from zero to
six, and each is able to add up to 65535 new primitives to their MULTOS implementations.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

78 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Three, Numbers 0x80,0x81,0x82,0x83,0x84,0x85,0x86

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 79

Card Block

This primitive blocks the MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x05, MSB_StartAddress_MAC, LSB_StartAddress_MAC

Arguments

The 1-byte arguments MSB_StartAddress_MAC and LSB_StartAddress_MAC represent the most significant
and least significant byte of the offset in Public memory where the MAC value is held.

In MULTOS 4.3 and above, the 2 arguments are ignored and may contain any value.

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

For MULTOS 4.2 and below:
In order for an application to use this primitive to block a MULTOS device a Card Block MAC (CBMAC) must
be supplied to the application to authenticate the card block operation.

For MULTOS 4.3 and above:
This primitive is successful if the “card_block” bit in the application’s access_list is set.

If successful the zero flag is set, and the device is blocked. A blocked device will not allow any applications
to be selected either implicitly, as is the case with default and shell mode, or explicitly through the Select
File command. However, during the session in which a device is blocked the application that called the
primitive is still operational and may continue to process commands. Once the application session ends it
and all applications can not be selected. Once a device is blocked MULTOS will return a response status of
"6A81, Function Not Supported" if an attempt is made to select an application, unless that application has
the “card_unblock” bit set in the application’s access_list.

If unsuccessful the zero flag is reset, and the device's blocked status is not changed. The application may
continue processing as normal and the MULTOS device will continue to process as before.

The Card Block primitive is closely associated with the EMV command Card Block. Please note that the
EMV MAC supplied is intended to permit an application to verify the authenticity of the APDU command

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

80 MULTOS is a registered trademark of MULTOS Limited.

data. On the other hand the CBMAC allows the MULTOS 4.2 and below device to authenticate that the
request to block the device.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the device is successfully blocked, and cleared otherwise.

Primitive Set and Number

set two, number 0x05

Examples

The following example illustrates the use of this primitive when the CBMAC value is held at the base of
public memory. The incoming data is structured as given in the example.

prmCardBlock EQU 0x05

// assumes public data starts here

pCBMAC PUBLIC BYTE 8

pEMVMAC PUBLIC BYTE 8

 // assumes a CheckEMVMAC function with 8-byte MAC as parameter

 LOAD pEMVMAC, 8

 CALL CheckEMVMAC

 // assumes function cleans stack and sets CCR.Z

 BNE label_failed_EMVMAC_check

 // otherwise, do card block with CBMAC at PB[0] = PB[0000]

 PRIM prmCardBlock, 0, 0

 // check result

 BEQ label_card_blocked

This second example assumes that the CBMAC is placed at different offsets within public and that the first
two bytes of incoming command data correspond to the most significant and least significant bytes
respectively. No EMV MAC handling is shown.

// assumes public starts here

pMSB PUBLIC BYTE 1

pLSB PUBLIC BYTE 1

pVariableData PUBLIC BYTE 32

 // just do card block

 PRIM prmCardBlock, pMSB, pLSB

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 81

Card UnBlock

This primitive unblocks the MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x13

Arguments

None.

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

This primitive is successful if the device is currently blocked and the “card_unblock” bit in the application’s
access_list is set.

If successful the zero flag is set, and the device is unblocked.
If unsuccessful the zero flag is reset, and the device's blocked status is not changed.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the device is successfully unblocked, and cleared otherwise.

Primitive Set and Number

set zero, number 0x13

Examples

The following example illustrates the use of this primitive to unblock a device.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

82 MULTOS is a registered trademark of MULTOS Limited.

prmCardBlock EQU 0x13

 PRIM prmCardUnBlock

 // check result

 BEQ label_card_unblocked

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 83

Check BCD

This primitive returns whether the number provided is in binary decimal format.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0xDA

Arguments

None.

Stack Usage

Stack In Length Address

Stack Out Result

The Length parameter is one byte and the Address parameter is two bytes in size.
The Length is the length of the block and Address is the segment address of the block containing the
number to be tested. Result is one byte and holds the result of the operation as follows:

• 0 = Not a BCD number
• 1 = BCD number

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0xDA

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

84 MULTOS is a registered trademark of MULTOS Limited.

Check Case

This primitive performs three vital functions in that it:

• instructs the operating system how to interpret incoming command APDU

• validates the incoming command as far as is possible under the transport protocol

• permits MULTOS to handle low level communication between the device and the terminal

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds ISOCase parameter byte

PRIM 0x01

Stack Usage

Stack In ISOCase

Stack Out {empty}

The 1-byte parameter ISOCase indicates which ISO Command Case is expected.

Arguments

None.

Remarks

ISO/IEC 7816 – 4 describes the four possible command cases. In brief, they are:

Case Command Data Sent Response Data Expected
1 No No
2 No Yes
3 Yes No
4 Yes Yes

Once an incoming command has been identified by the application as being one that it can process, Check
Case should be called using the expected ISO command case as the stack based parameter. If the data in
public is consistent with the expected command case, the CCR Z flag will be set and cleared otherwise. If
the ISOCase parameter is not a valid command case indicator the primitive will consider this to be an
inconsistency and clear the CCR Z flag.

The operating system’s handling of a Case 1 command is such that only a status word is returned. There
are, however, some interface devices that expect an acknowledgement byte to be transmitted prior to the
status word. In order to cater for these devices both MULTOS 4 and MULTOS 4.2 support an ISOCase

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 85

parameter value of 5. The handling of this case value is exactly the same as that for Case 1 with the
exception that an acknowledgement byte is transmitted.

The amount of APDU command checking that can be performed by the primitive is based on the transport
protocol in use. In most cases an application does not need to be aware of the low level transport handling
that occurs as MULTOS ensures that it is takes place. In those cases where more information is required,
please see [MDG].

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the specified case is consistent with the data in Public, cleared if it is not

Primitive Set and Number

Set zero, number 0x01

Example

The following example checks that the ISO Case of the current APDU is ISO Case 2 and jumps to an error
handler if the wrong case is detected.

prmCheckCase EQU 0x01

PUSHB 0x02

PRIM prmCheckCase

JNE errWrongCase

//continue processing ISO Case 2

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

86 MULTOS is a registered trademark of MULTOS Limited.

Checksum

This primitive generates a four byte checksum over a block of memory of variable size.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds Length, BlockAddr parameter

PRIM 0x82

Arguments

None.

Stack Usage

Stack In Length BlockAddr

Stack Out CheckSum

The 2-byte parameter Length is the size in bytes of the area over which to calculate a checksum value. The
BlockAddr parameter is 2 bytes in size and indicates the start address of the input block. Both of these are
overwritten by 4-byte result of the checksum algorithm given as CheckSum above.

Remarks

The following C code illustrates an implementation of the checksum algorithm:

unsigned byte message[Length]

unsigned byte checksum[4];

checksum[0] = 0x5A;

checksum[1] = 0xA5;

checksum[2] = 0x5A;

checksum[3] = 0xA5;

for (j = 0; j < Length; ++ j)

{

 // add data byte into most significant byte of checksum

 checksum[0] += message[j];

 // add each byte of checksum into the next byte

 checksum[1] += checksum[0];

 checksum[2] += checksum[1];

 checksum[3] += checksum[2];

}

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 87

The result of each byte addition is held in single byte, where any result greater than 255 is truncated in
such a way that the least significant byte of the result is maintained. That is to say the carries are dropped
from each addition. For example, 0xFF + 0x02 = 0x01.

If the block is in Static and transaction protection is on, the checksum calculation takes pending writes into
account. This is an exception to the general rule that pending writes are not visible to the application until
they are committed.

It is valid to calculate the checksum of a block of length zero; the result is 0x5AA55AA5.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x82

Example

The first example code fragment calculates the checksum of the word 0x9988:

CheckSumMe DYNAMIC BYTE 2 = 0x99, 0x88

PUSHW 0x0002 // length of block to check sum

LOADA CheckSumMe // 2 byte address of block to check sum

 // stack now has 4 bytes

PRIM 0x82 // invoke CheckSum primitive

 // result on stack = 0x7B, 0x13, 0x05, 0x9C

 // overwrites 4 byte input

The result, where all the operands and results are hexadecimal values, is calculated as follows:

 Checksum[0] Checksum[1] Checksum[2] Checksum[3]
Initial value 5A A5 5A A5
1st Byte (0x99) 5A + 99 = F3 A5 + F3 = 98 5A + 98 = F2 A5 + F2 = 97
2nd Byte (0x88) F3 + 88 = 7B 98 + 7B = 13 F2 + 13 = 05 97 + 05 = 9C

The following example performs a check sum over a block of the static area. This may be used to verify that
data has been loaded into the variables correctly. It is assumed that the correct value for the checksum is
held in the bottom four bytes of public

prmCheckSum EQU 0x82

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

88 MULTOS is a registered trademark of MULTOS Limited.

sName STATIC BYTE 10

 PUSHW 10

 LOADA sName

 PRIM prmCheckSum

 CMPN PB[0000],4

 JNE InvalidCheckSum

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 89

Configure READ BINARY

This primitive configures/deactivates the accelerated MULTOS READ BINARY command to directly access a
specified application Static memory space with optional secure messaging.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDC, Options

Arguments

The 1 byte argument Options is used to configure or deactivate the accelerated READ BINARY command as
follows.

b7-b4 b3-b0 Meaning

0 0 Deactivate the accelerated READ BINARY command

0 1-F RFU

1 0 Activate accelerated ICAO READ BINARY command with no BAC

1 1 Activate accelerated ICAO READ BINARY command with optional BAC

1 2 Activate accelerated ICAO READ BINARY command with mandatory
BAC

1 3 Activate accelerated ICAO READ BINARY command with optional BAC
lite (no MAC)

1 4 Activate accelerated ICAO READ BINARY command with mandatory
BAC lite (no MAC)

1 5-F Reserved for future ICAO Read Binary secure messaging modes (e.g.
BAC Lite)

2-F x RFU

Stack Usage (Options = 0x00)

If Options = 0x00 then the stack will contain the following:

Stack In {empty}
Stack Out {empty}

Stack Usage (Options = 0x10)

If Options = 0x10 then the stack will contain the following:

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

90 MULTOS is a registered trademark of MULTOS Limited.

Stack In Channel DataAddr

Stack Out {empty}

The 1-byte Channel value identifies the channel containing the data to be directly accessed by the
accelerated READ BINARY command. A value of 0 specifies the applications Static memory; all other values
are RFU.

The 2-byte DataAddr value identifies the segment address of the parameter block for the specified channel.
For channel 0 the parameter block contains the following parameters, from low address to high address:

• 4-byte offset from the start of Static of the data that is to be directly accessed by the accelerated
READ BINARY command.

• 4-byte length of the Static data that is to be directly accessed by the accelerated READ BINARY
command.

Stack Usage (Options = 0x11 or 0x12)

If Options = 0x11 or 0x12 then the stack will contain the following:

Stack In SSCAddr KeyMacAddr KeyEncAddr Channel DataAddr

Stack Out {empty}

The 2-byte values SSCAddr, KeyMacAddr and KeyEncAddr identify the segment address of the 8-byte
counter, 16-byte MAC key and 16-byte encryption key that are used by the secure messaging.

The 1-byte Channel value identifies the channel containing the data to be directly accessed by the
accelerated READ BINARY command. A value of 0 specifies the applications Static memory; all other values
are RFU.

The 2-byte DataAddr value identifies the segment address of the parameter block for the specified channel.
For channel 0 the parameter block contains the following parameters, from low address to high address:

• 4-byte offset from the start of Static of the data that is to be directly accessed by the accelerated
READ BINARY command.

• 4-byte length of the Static data that is to be directly accessed by the accelerated READ BINARY
command.

Stack Usage (Options = 0x13 or 0x14)

If Options = 0x13 or 0x14 then the stack will contain the following:

Stack In KeyEncAddr Channel DataAddr

Stack Out {empty}

The parameter descriptions are the same as above for options 0x11 and 0x12.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 91

Remarks

The Z flag is set if the configuration/deactivation is successful. It is cleared if the Options argument
contains an unsupported value. Invalid segment or Static addresses will cause an abend.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged.
V Unchanged
N Unchanged
Z Set if successful, cleared otherwise.

Primitive Set and Number

Set one, number 0xDC

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

92 MULTOS is a registered trademark of MULTOS Limited.

Control Atomic Writes

This primitive controls whether all future writes to Static are atomic. If transaction protection is enabled
then non-atomic writes do not form a part of the transaction. Atomic writes are automatically enabled
when an application starts, when it delegates and when it exits.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x18, Option

Arguments

The 1-byte argument Option defines whether atomic writes are to be disabled/enabled:

• 0x00 – atomic writes disabled

• 0x01 – atomic writes enabled

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

Invalid Option will cause an abend.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged.

Primitive set and number

Set one, number 0x18

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 93

Control Auto Reset WWT

This primitive controls the MULTOS automatic requesting of the Work Waiting Time extensions.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Flag which indicates whether the reset WWT

// functionality should be disabled or enabled

PRIM 0x10

Arguments

None.

Stack Usage

Stack In Flag

Stack Out {empty}

The 1-byte parameter Flag can take one of two values. If it has a value of 0x00, the function is enabled and
if the value is 0x01 it is disabled.

Remarks

By default, MULTOS causes a message to be automatically sent to the terminal to inform it that more time
is required for processing to complete during the execution of long commands. An application can, if it
wishes, send these messages manually by calling the Control Auto Reset WWT primitive with Flag = 0x01
and then calling the Reset WWT primitive periodically during the execution of the command. The time
during which MULTOS does not automatically reset the WWT is from when the primitive is called to when
MULTOS sends the command response back to the IFD or to when the application calls the Control Auto
Reset WWT primitive again with Flag = 0x00, whichever comes first.

The Control Auto Reset WWT primitive completely disables the MULTOS automatic generation of reset
WWT messages, even during computationally intensive primitives. MULTOS only guarantees that no reset
WWT messages are generated by MULTOS if the Control Auto Reset WWT primitive is called in the first
two MEL instructions executed following the reception of an application command. The first pushes the
byte value 0x01 the second calls the primitive.

The status of the auto reset functionality of MULTOS is maintained when one application delegates to
another application or when a delegate application exits. For example, (1) if an application disables the
MULTOS automatic generation of reset WWT messages and then delegates to a second application, the
automatically generate reset WWT messages will remain disabled. (2) if an application delegates to a

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

94 MULTOS is a registered trademark of MULTOS Limited.

second application which then disables the MULTOS automatic generation of reset WWT messages, on exit
back to the first application, automatic generation of reset WWT messages will remain disabled.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x10

Example

The following code fragment shows the recommended declarations and usage for this primitive.

prmControlAutoResetWWT EQU 0x10

The following example makes a call to the Control Auto Reset WWT primitive to stop MULTOS
automatically resetting the WWT.

PUSHB 0x01

PRIM prmControlAutoResetWWT

The following example makes a call to the Control Auto Reset WWT primitive to start MULTOS
automatically resetting the WWT.

PUSHB 0x00

PRIM prmControlAutoResetWWT

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 95

Convert BCD

This primitive converts a BCD-encoded value to the equivalent binary value and a binary value to the
equivalent BCD-encoded value.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x14, Mode

Arguments

The argument Mode specifies the BCD conversion to be performed and must be equal to one of the
following values.

• 0x00 to convert a BCD-encoded value to the equivalent binary value.

• 0x01 to convert a binary value to the equivalent BCD-encoded value.

The primitive abends if the argument Mode is not equal to one of these values.

Stack Usage

Stack In DestLength SourceLength DestAddr SourceAddr

Stack Out {empty}

The DestLength and SourceLength parameters are one byte in size and the DestAddr and SourceAddr
parameters are two bytes in size. The values SourceLength and DestLength are the length of the source and
destination data in bytes. The values SourceAddr and DestAddr are the segment addresses of the source
and destination data.

Remarks

When converting from a BCD-encoded value the source data must have a valid BCD format for the
conversion to succeed. If the format is invalid then the destination data is undefined and the Condition
Code Register’s Z flag becomes cleared.

When performing a conversion the number of bytes needed to hold the converted value may be larger
than the destination length. If the converted value is too large to be held in the destination area then the
destination data is undefined and the Condition Code Register’s Z flag becomes cleared.

If the conversion succeeds then the Condition Code Register’s Z flag becomes set.

This primitive works correctly even if the source and destination blocks overlap.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

96 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the conversion succeeds, cleared otherwise.

Primitive Set and Number

Set One, number 0x14

Example

The following converts a BCD-encoded value held in Public into the equivalent binary value held in Static.

prmConvertBCD EQU 0x14

PUSHB 0x06 //Length of destination area

PUSHB 0x06 //Length of source area

LOADA SB[0000] //Address of destination data

LOADA PB[0000] //Address of source data

PRIM prmConvertBCD, 0x00

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 97

Delegate

This primitive allows an application to invoke another application on the MULTOS device; that is the
current application temporarily ceases to execute and the delegate application is executed.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x80

Arguments

None.

Stack Usage

Stack In AIDAddr

Stack Out {empty}

The 2-byte parameter AIDAddr is the starting address of the application ID to which the executing
application wishes to delegate.

Remarks

The delegate application must be specified by an AID field, which is defined as a one-byte length followed
by an Application Identifier of the length given. For example, to delegate to an application with an
Application ID of F000000000AB the AID field, sAID below, would be:

sAID STATIC BYTE 6 = 0x05, 0xF0, 0x00, 0x00, 0x00, 0xAB

The Delegation primitive supports partial Application IDs; that is to say if the Application ID to delegate to
is shorter than an applications AID then they are considered to match if the most significant bytes match.
For example, if an attempt is made to delegate to an application with AID of 0xF000 then the application
with AID given above will be considered as a match since the most significant bytes of the application's AID
match the given AID.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

98 MULTOS is a registered trademark of MULTOS Limited.

Delegation fails, and 0x6A83 is placed in SW1-SW2, if:

• there is no application whose AID matches the AID specified by the delegator.

• the AID length is outside the permissible range of 1 to 16 bytes inclusive.

• the delegate is already active; i.e., an attempt is made to delegate recursively

• the implementation defined maximum number of delegations has been exceeded

If the delegate application abends then the MULTOS device goes mute and all execution of application
ceases.

If transaction protection is on, Delegate rolls back any uncommitted writes and turns transaction
protection off. Delegate always has this effect regardless of whether delegation succeeds.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x80

Example

The following example writes an APDU into the Public area and delegates to an application with AID of
0xF0000000000001.

prmDelegate EQU 0x80

// pSW1 is the 2 byte SW1 SW2 of the Status Word

sAID STATIC BYTE 8 = 7,0xF0,0,0,0,0,0,1

 // Delegation

 LOADA sAID

 PRIM prmDelegate

 // Check if SW = 6A83

 LOAD pSW1,2

 CMPW pSW1,0x6A,0x83

 // if so, jump to failed delegation handling

 JEQ DelegateFailed

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 99

DES ECB Decipher

This primitive performs DES ECB Decipher on an eight byte block of memory.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xC5

Arguments

None.

Stack Usage

Stack In KeyAddr OutputAddr InputAddr

Stack Out {empty}

Each parameter is 2 bytes in size and represents the starting address of an 8-byte block of memory.

Remarks

This primitive performs the DES decipher operation on an 8-byte block of memory. The DES key is held in
an 8-byte block. MULTOS ignores the parity bits.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0xC5

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

100 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example declares 8 bytes of static memory to hold the DES Key, the plaintext is held as
session data, while the resulting ciphertext will be written to public. The address for each of these is loaded
onto the stack and the DES ECB Decipher primitive is called.

prmDESECBDecipher EQU 0xC5

sKey STATIC BYTE 8 = 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08

dPlaintext DYNAMIC BYTE 8

pCiphertext PUBLIC BYTE 8

 LOADA sKey

 LOADA dPlaintext

 LOADA pCiphertext

 PRIM prmDESECBDecipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 101

DES ECB Encipher

This primitive performs DES ECB Encipher on an eight byte block of memory.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xC1

Stack Usage

Stack In KeyAddr OutputAddr InputAddr

Stack Out {empty}

Each parameter is 2 bytes in size and represents the starting address of an 8-byte block of memory.

Arguments

None.

Remarks

This primitive performs the DES encipher operation on an 8-byte block of memory. The DES key is held in
an 8-byte block. MULTOS ignores the parity bits.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0xC1

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

102 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example declares 8 bytes of static memory to hold the DES Key, the plaintext is held as
session data, while the resulting ciphertext will be written to public. The address for each of these is loaded
onto the stack and the DES ECB Decipher primitive is called.

prmDESECBEncipher EQU 0xC1

sKey STATIC BYTE 8 = 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08

dPlaintext DYNAMIC BYTE 8

pCiphertext PUBLIC BYTE 8

 LOADA sKey

 LOADA pCiphertext

 LOADA dPlaintext

 PRIM prmDESECBEncipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 103

DivideN

This primitive performs an unsigned division of two unsigned byte blocks.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds block length parameter

PRIM 0x08, Length

Arguments

The argument Length expresses the number of bytes in each byte block.

Stack Usage

Stack In Numerator Denominator

Stack Out Quotient Remainder

Each parameter is of size Length.

Remarks

The argument Length is specified using a single byte. Therefore, the maximum possible length of a block is
255 bytes.

This primitive performs unsigned division of the numerator by the denominator. These values are
overwritten with the resulting quotient and remainder. All of these parameters are of size Length.

If the denominator is zero, then:

• The C flag is set.

• The Z flag is unchanged.

• The data in Dynamic is unchanged.

If the denominator is non-zero, then:

• The C flag is cleared.

• The Z flag is set if the numerator is less than the denominator, and cleared otherwise

Condition Code

 C V N Z

- - - - X - - X

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

104 MULTOS is a registered trademark of MULTOS Limited.

C Set if the denominator is zero, cleared otherwise
V Unchanged
N Unchanged
Z Set if the quotient is zero, cleared if the quotient is non-zero, remains unchanged if the
denominator is zero.

Primitive Set and Number

Set one, number 0x08

Example

The following example divides 4128 (hexadecimal 0x1020) by 256 (hexadecimal 0x0100).

PUSHW 0x1020

PUSHW 0x0100 //Stack = 10,20,01,00

PRIM prmDivideN, 2 //Stack = 00,10,00,20

 // CCR C and Z cleared

The example above indicates that (4128 / 256) = 16 (0x0010) with a remainder of 32 (0x0020) or, when
expressed as a fraction, 16 32/256. The result is correct as (256 x 16) + 32 = 4128
The next example reverses the previous and divides 256 by 4128.

PUSHW 0x0100

PUSHW 0x1020 // Stack = 01, 00, 10, 20

PRIM prmDivideN, 2 //Stack = 00,00,01,00

 // CCR C cleared, Z set

This new example indicates that (256 / 4128) = 0 (0x0000) with a remainder of 256 (0x0100), or, as a
fraction 0 256/4128. The result is correct as (4128 x 0) + 256 = 256. Here the CCR Z flag has been set to
indicate that the quotient is 0.

Division by 0 results in the CCR C flag being set and the data on the stack is left unchanged.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 105

ECC Addition

This primitive adds two points on the elliptic curve specified by the supplied domain parameters.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD0

Arguments

None.

Stack Usage

Stack In
Stack Out

domainAddr point1Addr point2Addr outAddr

{empty}

All parameters are 2 bytes in size. The value held at domainAddr represents the elliptic curve domain
parameter. Both point1Addr and point2Addr are the location of the operands. The outAddr is the location
to which to write the result of the addition.

Remarks

This primitive calculates the point that is the result of the addition of two points on the elliptic curve
specified by the domain parameters. If the two points are equal the primitive calculates the double of the
point.

Both input points must be in the same representation, affine or projective, and the result is produced in
that same representation. If the input representation is different from that of the application, then calling
the primitive results in an abend.

Possible point representation values are:

0x04: Affine: X and Y values included
0x84: Projective: X, Y and Z values provided
0x0F: Affine: Use Gx and Gy values from domain parameters
0x8F: Projective: Use Gx, Gy from domain parameters with Z = 1
0x00: Affine: Use infinity as the point
0x80: Projective: Use infinity as the point

Points are structured as follows:
 BYTE representation | BYTE X[primeLen] | BYTE Y[primeLen] | BYTE Z[primeLen]

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

106 MULTOS is a registered trademark of MULTOS Limited.

Domain parameters are structures as follows
BYTE format[1] | BYTE primeLen | BYTE P[primeLen] | BYTE A[primeLen] | BYTE B[primeLen] |
BYTE Gx[primeLen] | BYTE Gy[primeLen] | BYTE N[primeLen] | 0x00[2] | BYTE H

Notes:
[1] Only supported value at present is 0x00
[2] This fixed zero byte is only required for MULTOS 4.2.1 and earlier.

If the result of the addition is infinity the Z flag is set and the representation of infinity is written to the
output address specified.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is infinity, cleared otherwise

Primitive Set and Number

Set zero, number 0xD0

Example

The following example shows how to use the ECC Addition primitive to add two points stored in Dynamic
placing the result back in Dynamic and then adding the base point of the elliptic curve.

prmEccAdd EQU 0xD0

sDomain STATIC BYTE 124 // The domain parameters for a 160 bit curve

eccBasePointAffine STATIC BYTE 0x0F // The base point in affine

//---

//Call ECC Add to add points together

//---

LOADA sDomain // Load addr domain parameters

LOADA LB[0] // Load addr of first input point

LOADA LB[0x29] // Load addr of second input point

LOADA LB[0] // Load addr of output point

PRIM prmEccAdd

//---

//Call ECC Add to add points together

//---

LOADA sDomain // Load addr domain parameters

LOADA LB[0] // Load addr of 1st input point

LOADA eccBasePointAffine // addr 2nd point (base point)

LOADA LB[0] // Load addr of output point

PRIM prmEccAdd

BEQ Infinity

EXIT

Infinity

EXITSW 0x9E, 0x20

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 107

ECC Convert Representation

This primitive converts the representation of an elliptic curve point.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD1

Arguments

None.

Stack Usage

Stack In
Stack Out

domainAddr pointAddr outAddr

{empty}

All parameters are 2 bytes in size. The value held at domainAddr represents the elliptic curve domain
parameters. The value found at pointAddr is the location of the point to convert. The outAddr is the
location to which to write the result of the addition.

Remarks

This primitive converts any elliptic curve point, including the point at infinity, from affine to projective
representation, or from projective to affine representation. If the input point is in affine representation the
output point will be written in projective representation with a randomised Z co-ordinate.

See ECC Addition for details of domain parameters, points and point representations.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0xD1

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

108 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example shows how to use the ECC Convert Representation primitive to convert a point
stored in Dynamic from projective to affine representation and place the result in Public.

prmEccConvert EQU 0xD1

sDomain STATIC BYTE 124 // The domain parameters for a 160 bit

curve

//---

//Call ECC Convert to convert point to affine representation

// (word) Address of Domain Parameters

// (word) Address of Input Point

// (word) Address of Output Point

//---

LOADA sDomain // Load addr domain parameters

LOADA LB[0] // Load addr of input point

LOADA PB[0] // Load addr of output point

PRIM prmEccConvert

EXITLA 0x29

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 109

ECC ECIES Decipher

This primitive performs an ECIES (Elliptic Curve Integrated Encryption Scheme) decryption of a given
message.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE9, Options

Arguments

The 1 byte argument Options is used to specify the algorithm to be used and whether the private key input
will be maintained in a “protected” form.

Options Algorithm Protect Private Key

0x00 ECIES_KEM with DEM3 (see ISO 18033-2).
Hash method is SHA-256.

No

0x01 ECIES_KEM with DEM3 (see ISO 18033-2).
Hash method is SHA-512.

No

0x80 ECIES_KEM with DEM3 (see ISO 18033-2).
Hash method is SHA-256.

Yes

0x81 ECIES_KEM with DEM3 (see ISO 18033-2).
Hash method is SHA-512.

Yes

Stack Usage

Stack In
Stack Out

domainAddr Length privatekeyAddr inputAddr messageAddr

{empty}

All parameters are 2 bytes in size. . domainAddr is the location of the elliptic curve domain parameter.
Length is the length of the deciphered message written to location messageAddr. privatekeyAddr is the
location of the private key to be used. inputAddr is the location of the enciphered message to be
processed.

The private key is of length prime_len. The enciphered message is in the form (R, X, T) where R is
prime_len x 2 bytes, X is Length bytes and T is half the hash size bytes.

Remarks

The Z flag is cleared on successful decipher.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

110 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Cleared if success, set if failure

Primitive Set and Number

Set one, number 0xE9

Example

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 111

ECC ECIES Encipher

This primitive performs an ECIES (Elliptic Curve Integrated Encryption Scheme) encryption of a given
message.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xEA, Options

Arguments

The 1 byte argument Options is used to specify the algorithm to be used.

Options Algorithm

0x00 ECIES_KEM with DEM3 (see ISO 18033-2).
Hash method is SHA-256.

0x01 ECIES_KEM with DEM3 (see ISO 18033-2).
Hash method is SHA-512.

Stack Usage

Stack In
Stack Out

domainAddr Length publickeyAddr messageAddr outputAddr

{empty}

All parameters are 2 bytes in size. . domainAddr is the location of the elliptic curve domain parameter.
Length is the length of the plaintext message to be processed at location messageAddr. publickeyAddr is
the location of the public key to be used. outputAddr is the location where the enciphered message is
written.

The public key consists of ecc_X followed by ecc_Y and is of length prime_len x 2. The enciphered message
is in the form (R, X, T) where R is prime_len x 2 bytes, X is Length bytes and T is half the hash size bytes.

Remarks

The Z flag is cleared on successful encipher.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

112 MULTOS is a registered trademark of MULTOS Limited.

N Unchanged
Z Cleared if success, set if failure

Primitive Set and Number

Set one, number 0xEA

Example

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 113

ECC Elliptic Curve Diffie Hellman

This primitive performs an Elliptic Curve Diffie Hellman key agreement in accordance with ANSI X9.63.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE8, Options

Arguments

The 1 byte argument Options is used to specify whether the private key input will be maintained in a
“protected” form.

Options Protect Private Key

0x00 No

0x80 Yes

Stack Usage

Stack In
Stack Out

domainAddr privatekeyAddr publickeyAddr sharedAddr

{empty}

All parameters are 2 bytes in size. domainAddr is the location of the elliptic curve domain parameter.
privatekeyAddr is the location of the private key to be used. publickeyAddr is the location of the public key
to be used. sharedAddr is the location where the shared secret key is written.

The private key is of length prime_len. The public key consists of ecc_X followed by ecc_Y and is of length
prime_len x 2. The shared secret key is of length prime_len.

Remarks

The Z flag is cleared on successful processing.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Cleared if success, set if failure

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

114 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set one, number 0xE8

Example

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 115

ECC Equality Test

This primitive tests if two points on the specified elliptic curve are equal.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD2

Arguments

None.

Stack Usage

Stack In
Stack Out

domainAddr point1Addr point2Addr

{empty}

All parameters are 2 bytes in size. The value held at domainAddr represents the elliptic curve domain
parameters. The values found at point1Addr and point2Addr are the locations of the points to test for
equality.

Remarks

This primitive tests if two points on the elliptic curve specified by the supplied domain parameters are
equal. Both input points must be in the same representation, affine or projective, or the application calling
the primitive will abend.

See ECC Addition for details of domain parameters, points and point representations.

The Z flag is set to indicate that the two points are equal.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the two points are equal, cleared otherwise

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

116 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set zero, number 0xD2

Example

The following example shows how to use the ECC Test for Equality primitive to determine if a point
supplied in Public is equal to the base point of the elliptic curve.

prmEccEqual EQU 0xD2

sDomain STATIC BYTE 124 // The domain parameters for a 160 bit

curve

eccBasePointAffine STATIC BYTE 0x0F // The base point in affine

//---

//Call ECC Equal to compare points

// (word) Address of Domain Parameters

// (word) Address of First Point

// (word) Address of Second Point

//---

LOADA sDomain // Load addr domain parameters

LOADA eccBasePointAffine// Load addr 1st pt (base point)

LOADA PB[0] // Load addr second point

PRIM prmEccEqual

BEQ PointsEqual

EXIT

PointsEqual

EXITSW 0x9E,0x20

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 117

ECC Generate Key Pair

This primitive generates an Elliptic Curve Cryptography public and private key pair.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE7, Options

Arguments

The 1 byte argument Options is used to specify whether the private key input will be maintained in a
“protected” form.

Options Protect Private Key

0x00 No

0x80 Yes

Stack Usage

Stack In
Stack Out

domainAddr keyAddr

{empty}

All parameters are 2 bytes in size. domainAddr is the location of the elliptic curve domain parameter.
keyAddr is the location where the key pair generated will be written.

The key pair consists of the public key followed by the private key. The public key consists of ecc_X
followed by ecc_Y and is of length prime_len x 2. The private key is of length prime_len.

Remarks

The Z flag is cleared on successful key pair generation.

The format of the domain parameters is shown in the example below. P, A, B, Gx, Gy and N are prime_len
long. The format, prime length and H are a single byte.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

118 MULTOS is a registered trademark of MULTOS Limited.

N Unchanged
Z Cleared if success, set if failure

Primitive Set and Number

Set one, number 0xE7

Example

#define ECC_KEY_LEN 28 // 224 bit prime
#define PRIM_GEN_ECC_PAIR 0xE7
typedef struct
{
 BYTE x[ECC_KEY_LEN];
 BYTE y[ECC_KEY_LEN];
} ecc_public_s;
typedef struct
{
 ecc_public_s publicKey;
 BYTE privateKey[ECC_KEY_LEN];
} ecc_s;

#pragma melstatic
BYTE abDomainParams[] = {
 0x00, // Format of domain params
 0x1C, // Prime length in bytes
 0xAC,0x75,0xCF,0x35,0x99,0x88,0x5A,0x6A,0x26,0xB2,0x0F,0x52,0x71,0xAB,0x95,0xA3,
 0xF0,0xD2,0x4B,0x74,0x37,0x21,0x46,0xCC,0xDB,0xA0,0x5F,0xA9, // P
 0x93,0x62,0xE8,0xF2,0x7B,0xDC,0xA9,0x6F,0x81,0xE6,0xBF,0xA6,0x79,0x5E,0x10,0x60,
 0xA9,0x69,0xD2,0x0D,0x9F,0x88,0x2E,0xB4,0xD8,0xE8,0xD4,0x20, // A
 0x89,0xD8,0x66,0x9D,0x59,0x20,0x5C,0xB4,0xA3,0x6E,0xEC,0x01,0x22,0xC6,0x49,0x1C,
 0x92,0xB6,0x18,0xB8,0xFC,0x09,0xB6,0xD6,0xF3,0x24,0xAA,0xCA, // B
 0x2E,0xDA,0x6A,0x9C,0xE8,0x53,0x3B,0xBC,0xB8,0x1D,0x49,0xF4,0x69,0xB5,0x43,0x95,
 0xD3,0x1A,0x64,0xB8,0x14,0x8B,0x92,0xB3,0x6B,0xC0,0x23,0x00, // Gx
 0x84,0xDA,0x69,0x9D,0xF7,0x56,0xBF,0x58,0xC9,0x50,0x76,0x7A,0xD7,0xF8,0x84,0x62,
 0x1E,0x2F,0x5C,0xFC,0x28,0x25,0x97,0x99,0x14,0x05,0xB2,0x4D, // Gy
 0x0F,0xAD,0x9E,0x79,0x3C,0x80,0xC2,0x66,0xBD,0xB3,0x18,0xAA,0x67,0x6C,0x9E,0xDB,
 0x4F,0xB6,0x53,0xCF,0x4F,0x67,0x92,0x37,0x13,0x37,0x56,0xA1, // N
 0x0B // H
};
ecc_s sEccKeyPair;

void main(void)
{

__push (abDomainParams);
__push (&sEccKeyPair);

 __code (PRIM, PRIM_GEN_ECC_PAIR, 0x00);

// …etc

}

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 119

ECC Generate Signature

This primitive generates an Elliptic Curve Cryptography signature.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE5, Options

Arguments

The 1 byte argument Options is used to specify the algorithm to be used and whether the private key input
will be maintained in a “protected” form.

Options Algorithm Protect Private Key

0x00 ECDSA No

0x80 ECDSA Yes

Stack Usage

Stack In
Stack Out

domainAddr privatekeyAddr hashAddr sigAddr

{empty}

All parameters are 2 bytes in size. domainAddr is the location of the elliptic curve domain parameter.
privatekeyAddr is the location of the private key to be used. hashAddr is the location of the hash code
over which the signature is generated. sigAddr is the location where the signature is written.

The private key and hash code are of length prime_len. The signature produced is (R, S) and is of length 2 x
prime_len.

Remarks

The Z flag is cleared on successful signature generation.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Cleared if success, set if failure

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

120 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set one, number 0xE5

Example

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 121

ECC Inverse

This primitive calculates the inverse (negation) of a point on an elliptic curve.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD3

Arguments

None.

Stack Usage

Stack In
Stack Out

DomainAddr pointAddr outAddr

{empty}

All parameters are 2 bytes in size. The value held at domainAddr represents the elliptic curve domain
parameters. The value found at pointAddr is the location of the point to convert. The outAddr is the
location to which to write the result of the inversion calculation.

Remarks

This primitive calculates the inverse (negation) of a point on an elliptic curve.
The output point will be written in the same representation (affine or projective) as the input point.

The values 0x0F or 0x8F may be specified in the Point Representation byte of the point stored at pointAddr
to indicate that the base point of the elliptic curve group is to be used as the input point. See ECC Addition
for details of points and point representations.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

122 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set zero, number 0xD3

Example

The following example shows how to use the ECC Inverse primitive with the ECC Addition primitive to
subtract two points stored in Dynamic placing the result back in Dynamic.

prmEccInv EQU 0xD3

sDomain STATIC BYTE 124 // The domain parameters for a 160 bit

curve

//---

//Call ECC Inverse to add points together

//---

LOADA sDomain // Load addr domain parameters

LOADA LB[0x29] // Load addr of input point

LOADA LB[0x29] // Load addr of output point

PRIM prmEccInv

//---

//Call ECC Add to add points together

//---

LOADA sDomain // Load addr domain parameters

LOADA LB[0] // Load addr of first input point

LOADA LB[0x29] // Load addr second point

LOADA LB[0] // Load addr of output point

PRIM prmEccAdd

BEQ Infinity

EXIT

Infinity

EXITSW 0x9E, 0x20

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 123

ECC Scalar Multiplication

This primitive calculates a scalar multiplication of a point on the specified elliptic curve.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD4

Arguments

None.

Stack Usage

Stack In
Stack Out

domainAddr pointAddr mAddr outAddr

{empty}

All parameters are 2 bytes in size. The value held at domainAddr represents the elliptic curve domain
parameters. The value found at pointAddr is the location of the input point and mAddr is the location of
the multplier. The outAddr is the location to which to write the result of the multiplication.

Remarks

This primitive performs a scalar multiplication of a point on the elliptic curve specified by the supplied
domain parameters by the specified unsigned integer multiplier which is one byte longer than the length
specified in the domain parameters. The result, a point on the curve, is written at the specified segment
address in the same representation as the input point.

The values 0x0F or 0x8F may be specified in the Point Representation byte of the point stored at pointAddr
to indicate that the base point of the elliptic curve group is to be used as the input point. See ECC Addition
for details of domain parameters, points and point representations.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

124 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is infinity, cleared otherwise

Primitive Set and Number

Set zero, number 0xD4

Example

The following example shows how to use the ECC Scalar Multiplication primitive to multiply a base point by
a random number stored in Dynamic placing the result back in Dynamic.

prmEccMult EQU 0xD4

eccBasePointAffine STATIC BYTE 0x0F // The base point in affine

prmGetRandomNumber EQU 0xC4

sDomain STATIC BYTE 124 // The domain parameters for a 160 bit

curve

//---

//Pad out stack

//---

PUSHZ 17

//---

//Generate Random Number

//---

PRIM prmGetRandomNumber

PRIM prmGetRandomNumber

PRIM prmGetRandomNumber

//---

//Call ECC Mult

//---

LOADA sDomain // Load addr domain parameters

LOADA eccBasePointAffine// Load addr input point (base point)

LOADA DT[-25] // Load addr of 21 byte multiplier

LOADA DT[-47] // Load addr of output point

PRIM prmEccMult

POP

BEQ Infinity

EXIT

Infinity

EXITSW 0x9E, 0x20

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 125

ECC Verify Point

This primitive verifies that a point is a valid elliptic curve point.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD1, VerType

Arguments

The argument VerType can take one of three values depending on what type of verification is required. A
value of 0x00 indicates the no group order check should be performed. A value of 0x01 means that the
point should have the same order N as specified in the domain parameters. A value of 0x02 indicates that
the point should not have order less than or equal to H as specified in the domain parameters.

Stack Usage

Stack In
Stack Out

domainAddr pointAddr

{empty}

All parameters are 2 bytes in size. The value held at domainAddr represents the elliptic curve domain
parameters. The value found at pointAddr is the location of the point to verify. See ECC Addition for details
of domain parameters, points and point representations.

Remarks

This primitive verifies that the specified point :

• is not infinity

• is a point on the elliptic curve defined by the specified domain parameters

• If VerType is set to 0x01: has the same order N as the group order specified in the domain
parameters

• If VerType is set to 0x02: does not have order less than or equal to H the co-factor specified in the
domain parameters

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

126 MULTOS is a registered trademark of MULTOS Limited.

N Unchanged
Z Set if the point is not valid, cleared otherwise

Primitive Set and Number

Set one, number 0xD1

Example

The following example shows how to use the ECC Verify primitive to verify that a point stored in Public is
valid and has the same order as the base point of the elliptic curve.

prmEccVerify EQU 0xD1

sDomain STATIC BYTE 124 // The domain parameters for a 160 bit

curve

//---

//Call ECC Verify to check the point

//---

LOADA sDomain // Load addr domain parameters

LOADA PB[0] // Load addr input point

PRIM prmEccVerify, 0x01

BEQ Invalid

EXIT

Invalid

EXITSW 0x9E, 0x20

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 127

ECC Verify Signature

This primitive verifies an Elliptic Curve Cryptography signature.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE6, Options

Arguments

The 1 byte argument Options is used to specify the algorithm to be used.

Options Algorithm

0x00 ECDSA

Stack Usage

Stack In
Stack Out

domainAddr publickeyAddr sigAddr hashAddr

{empty}

All parameters are 2 bytes in size. domainAddr is the location of the elliptic curve domain parameter.
publickeyAddr is the location of the private key to be used. sigAddr is the location of the signature to be
verified. hashAddr is the location of the hash code to be compared in the verification.

The public key consists of ecc_X followed by ecc_Y and is of length prime_len x 2. The signature is (R, S)
and is of length 2 x prime_len. The hash code is of length prime_len.

Remarks

The Z flag is cleared on successful signature verification.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Cleared if success, set if failure

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

128 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set one, number 0xE6

Example

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 129

Exchange Data

This primitive allows a MULTOS application to import data from or export data to a non-MULTOS
application.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x85

Arguments

None.

Stack Usage

Stack In Channel DataAddr

Stack Out {empty}

The 1-byte Channel value identifies the non-MLTOS application with which the application wishes to
exchange data. The 2-byte DataAddr is the location of data that is used to determine the direction of the
exchange as well as the content to exchange. Note that the format of the data is specific to the channel.

Remarks

If parameter Channel specifies a value unknown to the implementation then the AAM will abnormally end
the application.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x85

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

130 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example imports data from a non-MULTOS application to the address space of a MULTOS
application.

prmExchangeData EQU 0x85

SrcChannel EQU 0x01

start

 PUSHB SrcChannel // ID of exchange channel

 LOADA PB[0] // address of control data

 PRIM prmExchangeData

 EXIT // Exit

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 131

Exit to MULTOS and Restart

This primitive informs MULTOS that when the currently selected application exits (via the SYSTEM
instruction), MULTOS should process the contents of Public as if it has been passed from an IFD rather than
provide a response to the IFD. Such processing shall include the processing of a MSM command APDU
placed in Public by the currently selected application (or any other APDU other than a valid SELECT
command APDU). Following such processing, the response APDU from the command processing is placed
in Public and the currently selected application shall be restarted.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x17

Arguments

None.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters for this primitive.

Remarks

This primitive sets the most significant bit, b7, of ProtocolFlags to indicate to the application that it has
been restarted rather than called from the IFD. The application is responsible for clearing this bit.

As of MULTOS 4.5.4, if the calling application is currently being delegated to then it will return to the
delegator before MULTOS processes the command.

If the 6th (CCR6) bit of the CCR register is set, then the command will be processed immediately and the
calling application will then resume.

If the 5th (CCR5) bit of the CCR register is set, then the delegated application will not return to the
delegator before MULTOS processes the command. The delegated application will then be executed after
the command has been process and will return to the delegator after it has finished executing.

This primitive will reset bit 5 to bit 8 of the CCR register after they have been checked.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

132 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0x17

Example

This is a C code fragment showing how an application could construct an OPEN MEL APP command and get
MULTOS to execute it.

// Construct MULTOS Open MEL APP command to run later
CLA = 0xBE;
INS = 0x12;
P1 = 0x00;
P2 = 0x00;
Lc = 0x9D;
ProtocolFlags |= 0x02; // Lc valid
ProtocolFlags &= ~0x04; // Le not used
memcpy(abPublic,abOpenMelAppData,Lc);

__code(PRIM, 0x17);
Exit();

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 133

Flush Public

This primitive allows an application to return more bytes to the IO device than the size of the public
memory area.

The application sets La to the total number of bytes to return (which is greater than the size of public),
copies the first block of bytes to be returned to public then calls this primitive. The word at the top of the
stack gives the number of bytes to flush to the IO from the start of public. The application calls this
primitive multiple times for each block until just the last block of data is in public. When the application
returns to MULTOS, MULTOS will transmit the final response data held in Public (as indicated by La) and
then transmit SW12.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xEC

Arguments

None.

Stack Usage

Stack In BlockSize

Stack Out {empty}

BlockSize is a 2 bytes value giving the number of bytes in public to transmit to the IO..

Remarks

The primitive reduces La by BlockSize at the end of each call.

The primitive will cause an abend if BlockSize is larger than the size of the public memory area.

It's important to note that if the application calls Flush Public to flush the final block of response data then
MULTOS will only return SW12 when the application returns back to MULTOS and MULTOS sends the final
command response

Condition Code

 C V N Z

- - - - - - - X

C Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

134 MULTOS is a registered trademark of MULTOS Limited.

V Unchanged
N Unchanged
Z Set to 1 if La > 0 following the call to this primitive.

Primitive Set and Number

Set Zero, Number 0xEC

Example

In the following fragment of ‘C’ code, the maximum public size is 1024 bytes. The application wishes to
return 3200 bytes. doFlushPublic is a macro that calls the primitive. buff is an array of BYTEs in static
memory. pub is a pointer to the beginning of public memory.

La = 3200;

// Send first block
memcpy(pub,buff,1000);
doFlushPublic(1000);

// Second block
memcpy(pub,buff+1000,1000);
doFlushPublic(1000);

// Third block
memcpy(pub,buff+2000,1000);
doFlushPublic(1000);

// Remaining bytes
memcpy(pub,buff+3000,200);
multosExit();

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 135

Generate Asymmetric Hash General

This primitive generates an Asymmetric Hash Digest using as input a block of memory of arbitrary size.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xC4, Mode

Arguments

The 1-byte argument Mode is used to indicate which stack based parameters are required.

Stack Usage

See the Remarks section below for details of the stack usage.

All parameters are 2 bytes in size. The possible parameters are:

• IVAddr indicates the location of an initial vector with a size equal to the hash chain length

• dataLength gives the size of the input data block

• resAddr is the location where the resulting asymmetric hash should be written

• dataAddr is the location of the input data block that is of size dataLength.

• hmLen indicates the size of the hash modulus supplied

• hmAddr indicates the location of the hash modulus supplied

• appHcl gives an application supplied hash chain length value

Remarks

For MULTOS 4 implementations the hash chain length is always 16 bytes in length. In MULTOS 4.2 this
value is a fixed, platform specific value or the length can be supplied depending on the mode employed.

When an IV is not supplied, a default value is used. That value’s length is the hash chain length and each
byte is 0x55. Similarly, when a hash modulus is not supplied, the hash modulus value of the platform is
used. Details of this value are available by request from the KMA, but is only available to MULTOS Issuers.

The following table provides an overview of all possible Mode values, their support by MULTOS 4 and
MULTOS 4.2 and what application supplied values are required. In all cases the length of data and the
address of the data that serves as input must be supplied as must the result address.

Mode 4? 4.2? IV Supplied HM Supplied HCL Supplied

0 Y N N N N
1 Y N Y N N
2 Y Y N Y N

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

136 MULTOS is a registered trademark of MULTOS Limited.

3 Y Y Y Y N
4 N Y N Y Y
5 N Y Y Y Y

For MULTOS 4 there are two Mode values defined, 0 and 1, that are not used in MULTOS 4.2 or later. They
are included here for completeness.

A Mode value of 0 indicates that the default IV should be used and that no hash modulus value is supplied.
The stack for this mode would then be:

Stack In dataLength resAddr dataAddr

Stack Out {empty}

A Mode value of 1 indicates that the IV is supplied and that no hash modulus value is supplied. The stack
for this mode would then be:

Stack In IVAddr dataLength resAddr dataAddr

Stack Out {empty}

Mode values of 2 and 3 are supported by both MULTOS 4 and MULTOS 4.2.

A Mode value of 2 indicates that the default IV should be used and that a hash modulus value is supplied.
The stack for this mode would then be:

Stack In dataLength resAddr dataAddr hmLen hmAddr

Stack Out {empty}

A Mode value of 3 indicates that the IV is supplied and that a hash modulus value is supplied. The stack for
this mode would then be:

Stack In IVAddr dataLength resAddr dataAddr hmLen hmAddr

Stack Out {empty}

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 137

As of MULTOS 4.2 modes 4 and 5 have been added.

A Mode value of 4 indicates that the default IV should be used ,a hash modulus value is supplied as is an
application specified hash chain length. The stack for this mode would then be:

Stack In dataLength resAddr dataAddr hmLen hmAddr appHcl

Stack Out {empty}

A Mode value of 5 indicates that the IV, hash modulus and application specified hash chain length are
supplied. The stack for this mode would then be:

Stack In IVAddr dataLength resAddr dataAddr hmLen hmAddr appHcl

Stack
Out

{empty}

Any other value for Mode is undefined

If any of the required components are not present or if a combination of a component’s start address and
length yields an address outside the application’s data space, the application calling this primitive will
abnormally end processing.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0xc4

Example

The following code fragment shows the recommended declarations and usage for this primitive.

prmGenerateAHashGeneral EQU 0xC4

The following example generates the asymmetrical hash of a variable sAUCode.

sLCode STATIC WORD = 0x000A

sAUCode STATIC BYTE 0x0A = "1234567890"

//Calculate the A-Hash of sAUCode

 LOAD sLCode,2

 LOADA PB[0000]

 LOADA sAUCode

 PRIM prmGenerateAHashGeneral,0

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

138 MULTOS is a registered trademark of MULTOS Limited.

 EXITLA 0x0010

The next example uses the default IV value, but supplies a hash modulus and hash chain length value.

INPUTSIZE EQU 64

HMSIZE EQU 72

APPHCL EQU 20

dDataToBeHashed DYNAMIC BYTE 64

dHashDigest DYNAMIC BYTE 20

sMyHashModulus STATIC BYTE 72

 // Populate Mode 4 Stack

 // size of data

 PUSHW INPUTSIZE

 // address of result

 LOADA dHashDigest

 // address of input data

 LOADA dDataToBeHashed

 // hash modulus length

 PUSHW HMSIZE

 // hash modulus address

 LOADA sMyHashModulus

 // application specific hash chain length

 PUSHW APPHCL

 // call primitive using mode 4

 PRIM prmGenerateAHashGeneral, 4

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 139

Generate Asymmetric Signature General

This primitive generates an asymmetric signature over a message of arbitrary length.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE1, Mode

Arguments

The 1-byte argument Mode indicates what type of modular exponentiation is to be used. A value of 0
indicates the full exponentiation is required, while a value of 2 indicates that the exponentiation is to be
performed using Chinese Remainder Theorem (CRT).

Stack Usage

When the Mode value is set to 0, full exponentiation, the stack usage is:

Stack In

msgLen modLen eAddr modAddr sigAddr msgAddr cerType hmLen hmAddr

Stack Out {empty}

The parameters are as follows:

• 2-byte msgLen indicating the length of the message to be signed

• 2-byte modLen indicating the size of the modulus used to sign the hash digest

• 2-byte eAddr indicating the address of the exponent, where the data is of size modLen

• 2-byte modAddr indicating the address of the modulus of size modLen used to sign the hash digest

• 2-byte sigAddr indicating the location where to write the resulting signature and where the data
area is of size modLen

• 2-byte msgAddr indicating the location of the data to be signed, where the data is of size msgLen

• 1-byte cerType indicating the type of MULTOS certificate to produce

• 2-byte hmLen indicating the size of the hash modulus used in the calculation of the hash digest

• 2-byte hmAddr indicating the location of the hash modulus of size hmLen to use when calculating
the hash digest

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

140 MULTOS is a registered trademark of MULTOS Limited.

When the Mode value is set to 2, modular exponentiation using CRT, the stack usage is:

Stack In
msgLen modLen dpdqAddr pquAddr sigAddr msgAddr cerType hmLen hmAddr

Stack Out {empty}

The parameters are as follows:

• 2-byte msgLen indicating the length of the message to be signed

• 2-byte modLen indicating the size of the modulus used to sign the hash digest

• 2-byte dpdqAddr indicating the address of the concatenation of dp and dq, where the data is of size
modLen / 2

• 2-byte pquAddr indicating the address of the concatenation of the values p, q and u each of size
modLen / 2 used to sign the hash digest

• 2-byte sigAddr indicating the location where to write the resulting signature and where the data
area is of size modLen

• 2-byte msgAddr indicating the location of the data to be signed, where the data is of size msgLen

• 1-byte cerType indicating the type of MULTOS certificate to produce

• 2-byte hmLen indicating the size of the hash modulus used in the calculation of the hash digest

• 2-byte hmAddr indicating the location of the hash modulus of size hmLen to use when calculating
the hash digest

In this mode it is assumed that the modulus length given in modLen is even. The factors p and q are prime,
can both be expressed in modLen / 2 bytes and the relationship p < q holds.

Remarks

The hashing algorithm used by this primitive is the MULTOS asymmetric hash and the certificates produced
are in a MULTOS format. The format is given in the 1-byte cerType parameter, where a value of 3 indicates
that a MULTOS 3 certificate should be produced and a value of 4 means that the certificate should be in a
MULTOS 4 format.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0xE1

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 141

Generate DES CBC Signature

This primitive generates an 8-byte DES CBC Signature over a block of memory.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack Length, IVAddr, KeyAddr, SigAddr, InputAddr

PRIM 0xC6

Arguments

None.

Stack Usage

Stack In Length IVAddr KeyAddr SigAddr InputAddr

Stack Out {empty}

All the parameters are 2-bytes in size. The parameter Length is the size of the plaintext used as input to the
signature generation process. The value IVAddr is the location of an 8-byte initial vector, KeyAddr is the
location of an 8-byte DES key, SigAddr is the location where the 8-byte signature is written and InputAddr
is the location of data of size Length to be signed.

Remarks

This primitive uses a single 8-byte DES key and operates in CBC mode. At each step the DES encipher
operation is performed.

The primitive operates only on complete 8-byte blocks in the plaintext. If Length is not an integer multiple
of 8, trailing bytes are ignored. For example, if Length was 17 bytes, the 16 most significant bytes would
serve as input to the algorithm and the last byte would be ignored.

The parity bits of the key are ignored.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

142 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set zero, number 0xC6

Example

The following example generates the DES CBC Signature over the contents of sAUCode and writes it to the
base of public.

prmGenDESCBCSignature EQU 0xC6

sLCode STATIC WORD = 16

sIV STATIC BYTE 8 = 1,2,3,4,5,6,7,8

sDESKey STATIC BYTE 8 = 1,2,3,4,5,6,7,8

sAUCode STATIC BYTE 16 = "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16"

//Calculate the signature sAUCode

 LOAD sLCode,2

 LOADA sIV

 LOADA sDESKey

 LOADA PB[0000]

 LOADA sAUCode

 PRIM prmGenDESCBCSignature

 EXITLA 0x008

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 143

Generate MAC

This primitive generates a MAC according to the required algorithm.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0xC6, Algorithm

Arguments
The 1 byte argument Algorithm is used to specify the MAC algorithm as follows.

Algorithm = 0: DES MAC according to EMV 2000, Version 4.0 : December 2000. Integrated Circuit Card
Specification for Payment Systems Book 2 – Security and Key Management, appendix A1.2 (see also ISO9797-1
algorithm 3).

Algorithm = 1: DES CBC MAC according to ISO9797-1 algorithm 1. If the input data is a multiple of the DES block
length (8-bytes) then no padding is applied. This can be used to provide an IV to the Generate MAC primitive
Algorithm 0. This could also be used as a substitute for the Generate DES CBC Signature or Generate Triple DES
CBC signature primitives.

Algorithm = 2: AES CMAC according to ISO9797-1 MAC Algorithm 5 and in NIST SP 800-38B.

Algorithm = 3: AES CBC MAC according to ISO9797-1 algorithm 1. If the input data is a multiple of the AES block
length (16-bytes) then no padding is applied. This can be used to provide an IV to the Generate MAC primitive
Algorithm 2.

Algorithm = 4: HMAC according to ISO9797-2 MAC Algorithm 2.

Stack Usage

 Algorithm 0:

Stack In PadByte MsgLength IVAddr KeyAddr MACAddr MsgAddr

Stack Out {empty}

Algorithm 1, 2, & 3:

Stack In PadByte MsgLength IVAddr KeyAddr MACAddr MsgAddr KeyLength

Stack Out {empty}

Algorithm 4:

Stack In HashAlgo MsgLength KeyAddr MACAddr MsgAddr KeyLength

Stack Out {empty}

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

144 MULTOS is a registered trademark of MULTOS Limited.

Where:

• PadByte: 1-byte parameter specifying the value of padding byte used to pad out the input message upto
a multiple of the algorithm block length.
Eg: for a padding byte = 0x80
DES MAC: Msg | 0x80, 0x00..0x00 making the total message a multiple of 8-bytes.
AES CMAC: Msg | 0x80, 0x00..0x00 making the total message a multiple of 16-bytes.

• MsgLength: 2-byte parameter specifying the input message length.

• IVAddr: 2-byte parameter specifying the location of the Initial Vector. The IV Length is dependent on the
algorithm, ie: 8-bytes for DES, 16-bytes for AES.

• KeyAddr: 2-byte parameter specifying the address of the key.

• MACAddr: 2-byte parameter specifying the address to store the result. The length of the result will be 8-
bytes for a DES based algorithm, 16-bytes for AES, and dependent on the hash result length for HMAC.

• MsgAddr: 2-byte parameter specifying the address of the input message.

• KeyLength: 1-byte parameter specifying the keylength. Valid values are:
o Algorithm 0: 16-byte 3DES key assumed. This parameter should not be supplied for Algorithm 0.
o Algorithm 1: 8/16/24
o Algorithm 2: 16/24/32
o Algorithm 3: 16/24/32
o Algorithm 4: upto the hash block size. If less than the hash block size is used then the key is

padded with 00’s.

• HashAlgo: The following hash algorithms can be used for HMAC
o HashAlgo = 0: SHA-1; hash block length = 64; hash result length = 20
o HashAlgo = 1: SHA-256; hash block length = 64; hash result length = 32
o HashAlgo = 2: SHA-512; hash block length = 128; hash result length = 64

Remarks

IMPORTANT: Consult the MULTOS Implementation Report for the device you are developing for as not all
implementations support all algorithms.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number
Set one, number 0xC6

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 145

Generate Random Prime

This primitive generates a random prime value

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds flag, conf, timeout, rgExp, rgMinAddr, rgMaxAddr

outAddr

PRIM 0xCC

Arguments

None.

Stack Usage

Stack In gcdFlag conf timeout rgExp rgMinLoc rgMaxLoc outAddr

Stack Out {empty}

The most significant bit of the 1-byte parameter gcdFlag is set if the prime to generate must meet the
condition that 3 and the prime value minus one are co-prime; i.e., the greatest common divisor of 3 and
prime -1 must be 1.

The 2-byte parameter conf is used to set the level of confidence that the number generated is prime. The
value must be greater than zero and indicates that the probability that the result is composite is less than
or equal to 2-conf. For example, if conf was set to 4, then the probability that the number is composite
would be
2-4 = 1/16.

The 2-byte parameter timeout is the approximate time in hundredths of a second within which the
primitive should return a value. If the value is zero, then the primitive will not return until a prime number
is found.

The 2-byte parameter rgExp is the desired length of the prime expressed in bytes, while rgMinLoc is the
address of a 4-byte value giving the minimum value of the four most significant bytes of the modulus and
reMaxLoc is the address of a 4-byte value giving the maximum value of the four most significant bytes of
the modulus.

The 2-byte parameter outAddr is the location where the generated prime of size rgExp is to be written.

Remarks

This primitive generates a random prime in the range

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

146 MULTOS is a registered trademark of MULTOS Limited.

[rgMin * 256rgExp-4, rgMax * 256rgExp-4].

If the parameter conf is set to zero the application calling the primitive will abnormally end if the
implementation uses a probabilistic primality test.

It is expected that implementations will select a candidate number and check if it prime. If it is not, a new
candidate is chosen and the process is repeated. The implementation will translate the timeout value to a
maximum number of candidates to try, which must be at least one, based on an average time to check a
candidate.

If no prime is generated the CCR Z flag is cleared and no value is written to outAddr.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Z is set if the prime is returned and cleared on timeout.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 147

Primitive Set and Number

Set zero, number 0xCC

Example

The following code fragment generates a 576-bit prime for an RSA key set with a public exponent of 3. The
chance that the result is not actually prime is less than 1 in a billion. The operation cancels if it takes longer
than 1 minute.

PrmGenerateRandomPrime EQU 0xCC

abyPrime STATIC BYTE 72

abyRgMin STATIC BYTE 4 = { 0x80, 0x00, 0x00, 0x00 }

abyRgMax STATIC BYTE 4 = { 0xFF, 0xFF, 0xFF, 0xFF }

//---

//Call generate random prime

// (byte) flag

// (word) conf confidence of prime being composite

// (word) timeout approximate maximal time to search

// (word) length of prime

// (word) Address of abyRgMin

// (word) Address of abyRgMax

// (word) Address of abyPrime (output)

//---

 PUSHB 0x80 //gcd(3, prime-1)=1

 PUSHW 30 //confidence 10-9 2-30
 PUSHW 6000 //timeout

 PUSHW 64

 LOADA abyRgMin //Address of rgMin

 LOADA abyRgMax //Address of rgMax

 LOADA abyPrime //Address of result

 PRIM prmGenerateRandomPrime

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

148 MULTOS is a registered trademark of MULTOS Limited.

Generate RSA Key Pair

This primitive generates an RSA key pair for application usage.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE0, Method, Mode

Arguments

The 1-byte parameter method specifies the algorithm used to generate the key pair.

• 0x00: The key pair is generated using the default method defined by the MULTOS implementation.
This method and algorithm used is decided upon by the MULTOS Implementer to ensure quality
of keys generated and performance. This method may use proprietary mechanisms dependent
upon the hardware platform and cryptographic co-processor features.

• 0x01: The key pair is generated using the method defined by [X9.31].

• 0x80: The protected key pair is generated using the default method.

• 0x81: The protected key pair is generated using the method defined by [X9.31].

The 1-byte parameter mode specifies the manner in which the key pair will be generated. This parameter
applies only to method 0x00. For method 0x01, any value is ignored.

• 0x00: Performance. A key pair will be generated in a manner that will optimise performance of the
generation process.

• 0x01: Balanced. A key pair will be generated in a manner that balances performance against
confidence in the prime numbers used to generate the key pair.

• 0x02: Confidence. A key pair will be generated in a manner that maximises the confidence in the
prime numbers used to generate the key pair.

Stack Usage

Stack In keyLen eLen eAddr dpdppquAddr mAddr mLen

Stack Out {empty}

- The 2-byte parameter keyLen is the length in bytes of the key to be generated.
- The 2-byte parameter eLen is the length of the public exponent.
- The 2-byte parameter eAddr is the segment address of the public exponent.
- The 2-byte parameter dpdqAddr is the segment address of dp concatenated to dq, p, q and u.
- The 2-byte parameter mAddr is the segment address of the modulus, if to be returned.
- The 2-byte parameter mLen is the length of the modulus (equal to keyLen), or zero if the modulus is

not to be returned.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 149

Remarks

This primitive calculates an RSA key pair.
Implementations may only support a selection of method and mode arguments. Please see the MIR for
details.

Condition Code

 C V N Z

- - - - X - - -

C Set if the generation of the key pair fails, cleared if the generation of the key pair succeeds.
V Unchanged
N Unchanged
Z Unchanged.

Primitive Set and Number

Set Two, number 0xE0

Example

The following example uses the Generate RSA Key Pair primitive to generate a 1024-bit / 128-byte key pair.
prmGenRSAKeyPair EQU 0xE0

sMod STATIC BYTE

sDPDQ STATIC BYTE 96

sP STATIC BYTE 32

sQ STATIC BYTE 32

sU STATIC BYTE 32

sBase STATIC BYTE 64

//---

//Call primitive to protect the keys

// (word) Length of Modulus

// (word) Address of dp|dp

// (word) Address of p|q|u

// (word) Address of dp|dq

// (word) Address of p|q|u

//---

 PUSHW 0x0080 //Length of key to be generated

 PUSHW 0x0002 //Length of public exponent length

 LOADA sE //Address of public exponent

 LOADA sDPDQPQU //Address of dp|dq|p|q|u

 LOADA sM //Address of modulus

 PUSHW 0x0080 //Length of Modulus

 PRIM prmGenRSAKeyPair // call primitive

//---

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

150 MULTOS is a registered trademark of MULTOS Limited.

Generate Triple DES CBC Signature

This primitive generates an 8-byte Triple DES CBC Signature over a block of memory.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack Length, IVAddr, KeyAddr, SigAddr, InputAddr

PRIM 0xC7

Arguments

None.

Stack Usage

Stack In Length IVAddr KeyAddr SigAddr InputAddr

Stack Out {empty}

All the parameters are 2-bytes in size. The parameter Length is the size of the plaintext used as input to the
signature generation process. The value IVAddr is the location of an 8-byte initial vector, KeyAddr is the
location of two 8-byte DES key, SigAddr is the location where the 8-byte signature is written and InputAddr
is the location of data of size Length to be signed.

Remarks

This primitive uses two 8-byte DES keys and operates in CBC mode. The 16-byte key value assumes that the
most significant 8 bytes are “Key 1” and the least significant 8 bytes are “Key 2”. At each step the DES
operations performed are: encipher using the Key 1, decipher using Key 2, encipher using Key 1.

The primitive operates only on complete 8-byte blocks in the plaintext. If Length is not an integer multiple
of 8, trailing bytes are ignored. For example, if Length was 17 bytes, the 16 most significant bytes would
serve as input to the algorithm and the last byte would be ignored.

The parity bits of the key are ignored.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 151

Z Unchanged

Primitive Set and Number

Set zero, number 0xC7

Example

The following example generates the DES CBC Signature over the contents of sAUCode and writes it to the
base of public.

prmGenTripleDESCBCSignature EQU 0xC7

LCODE EQU 16

sIV STATIC BYTE 8 = 1,2,3,4,5,6,7,8

sDESKeys STATIC BYTE 8 = 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07, 0x08,

 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F

sAUCode STATIC BYTE 16 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16

//Calculate the signature sAUCode

 PUSHW LCODE

 LOADA sIV

 LOADA sDESKeys

 LOADA PB[0000]

 LOADA sAUCode

 PRIM prmGenTripleDESCBCSignature

 EXITLA 0x008

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

152 MULTOS is a registered trademark of MULTOS Limited.

Get Configuration Data

This primitive allows applications to access exactly the same configuration as can be accessed via the Get
Configuration Data APDU command.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0x15

Arguments
None.

Stack Usage

Stack In outAddr Token

Stack Out BytesRead

All the parameters are two bytes in size.

Token takes the same values defined in the Remarks table for the Get Configuration Data command. outAddr
points to a buffer to contain the requested data. bytesRead returns the number of bytes written by the
primitive to outAddr or zero if an error condition occurred (invalid token or attempt to write to invalid address).

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x15

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 153

Get AID

This primitive gets the AID of the calling application or any other loaded application.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 / 2 MULTOS 4.5.x

Syntax

PRIM 0xDD

Arguments
None.

Stack Usage

Stack In Dest AppNumber

Stack Out Result

The one-byte AppNumber specifies the number of the application to get the AID of. An application
number of zero refers to the executing application.

The two-byte Dest defines the destination address of the 17-byte AID (one byte length followed by a 16-
byte body).

The one-byte Result holds the result of the operation: 0 indicates that an application with the specified
application number does not exist and 1 indicates that the application does exist. The AID is only saved in
the destination if Result equals 1.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0xDD

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

154 MULTOS is a registered trademark of MULTOS Limited.

Get Available Interface Types

This primitive returns information on the interfaces supported by the MCD.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS

4.5.1/2/3

MULTOS 4.5.4

onwards

Syntax

PRIM 0x17, type

Arguments
type (a single byte) specifies the type of interfaces as follows.

• 0x00 - standard interfaces

• 0x01 - proprietary interfaces

• All other values - RFU

Stack Usage

Stack In {empty}

Stack Out SupportedInterfaces

Remarks
SupportedInterfaces is a 16-bit bit field that indicates which interfaces are supported by the MULTOS platform
as follows.

• type = 0x00 (standard interfaces)
o bit 0: 1 = contact ISO smartcard interface supported, 0 = not supported
o bit 1: 1 = contactless ISO smartcard interface supported, 0 = not supported
o bits 2-15: RFU

• type = 0x01 (proprietary interfaces)
o bits 0-15: implementation-specific.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 155

Primitive set and number

Set one, number 0x17

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

156 MULTOS is a registered trademark of MULTOS Limited.

Get Data

This primitive retrieves the Data Objects (DO) of a generic MAOS device. Specifically for MULTOS, this
command returns data objects to identify the platform type and other objects as agreed with Global
Platform.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds Addr parameter

PRIM 0x87, ReadLength

Arguments

The value ReadLength specifies the maximum number of bytes to read from the Data.

Stack Usage

Stack In outAddr

Stack Out BytesRead

The 2-byte parameter outAddr indicates the location where the data returned is to be written. While the 1-
byte BytesRead values indicates the total number of bytes actually read.

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.

The Data Object is copied to the segment address specified by the application. The number of bytes copied
is the lesser of the number requested and the actual length of the Data.
The number of bytes copied is returned on the stack. The exact effect of this primitive is undefined if the
destination area includes the top one or two bytes of the stack.

This primitive allows an application to obtain the Data Objects of the MCD. The data structure returned by
this primitive is given as part of the ‘Get Data’ command in the ‘APDU Commands’ section.

Condition Code

 C V N Z

- - - - X - - -

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 157

C Set if data retrieved was less than requested, cleared otherwise
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0x87

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

158 MULTOS is a registered trademark of MULTOS Limited.

Get Delegator AID

This primitive permits an application to ascertain the Application ID of the application that delegated to it,
if any.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds AIDAddr parameter

PRIM 0x81, ReadBytes

Arguments

The argument ReadBytes indicates the maximum number of bytes of the AID to write.

Stack Usage

Stack In AIDAddr

Stack Out {empty}

The 2-byte parameter AIDAddr holds the address where ReadBytes number of the Application ID is to be
written.

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.

The AID, preceded by its length expressed as a byte, is copied to the segment address specified by the
application. The number of bytes copied is the lesser of the number requested or the actual length of the
AID plus one for the length byte.

If the application calling the primitive was not delegated to, then the CCR Z flag is set.

Condition Code

 C V N Z

- - - - X - - X

C Set if data retrieved was less than requested, cleared otherwise
V Unchanged
N Unchanged
Z Set if there is no Delegator, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 159

Primitive Set and Number

Set one, number 0x81

Example

The following example checks that the application has been delegated to by another application, and that
the AID of that application is 0xF0000000000002; otherwise the application exits.

prmGetDelegatorID EQU 0x81

sAID STATIC BYTE 8 = 7,0xF0,0,0,0,0,0,2

dTemp DYNAMIC BYTE 8

 LOADA dTemp

 PRIM prmGetDelegatorID,0x08

 JEQ ValidAID

 LOAD sAID,7

 CMPN dTemp,7

 JNE InvalidAID

 JMP Continue

ValidAID

 EXIT

InvalidAID

 EXIT

Continue

 //Continue processing

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

160 MULTOS is a registered trademark of MULTOS Limited.

Get DIR File Record

This primitive retrieves a record from the Directory File, also referred to as the DIR File, stored in a root
directory of the MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Addr, RecNo parameters

PRIM 0x09, ReadLength

Arguments

The argument ReadLength specifies the number of bytes to read from the DIR File record.

Stack Usage

Stack In Addr RecNo

Stack Out Addr RecNo BytesRead

The 2-byte parameter Addr indicates the address where the retrieved DIR File record should be written.
The 1-byte parameter RecNo is the record number to be retrieved and BytesRead is the actual number of
bytes read from the DIR File record.

A RecNo of zero indicates the current application’s DIR file record (supported from MULTOS 4.5).

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.

The DIR File record numbers are indexed from 1.

The DIR file record is copied to the segment address specified by the application. The number of bytes
copied is the lesser of the number requested and the actual length of the record.

If a record does not exist the CCR Z flag is set.

Condition Code

 C V N Z

- - - - X - - X

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 161

C Set if data retrieved was less than requested, cleared otherwise.
V Unchanged
N Unchanged
Z Set if the specified record does not exist, cleared otherwise

Primitive Set and Number

Set one, number 0x09

Example

The following example reads in the whole of the first DIR File record into the base of public and sets La to
the number of bytes read.

prmGetDIRFileRecord EQU 0x09

pLa EQU PT[-4]

 LOADA PB[0000] // Load address of public base to stack

 PUSHB 1 // We want record no 1

 PRIM prmGetDIRFileRecord, 64

 STORE pLa,1 // Copy bytes read into La

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

162 MULTOS is a registered trademark of MULTOS Limited.

Get FCI State

This primitive returns whether the currently selected application has a normal or dual FCI.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0x87

Arguments

None.

Stack Usage

Stack In {empty}

Stack Out Result

Result is one byte and holds the result of the operation as follows:

• 0 = The executing application has a normal FCI
• 1 = The executing application has a dual FCI

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0x87

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 163

Get File Control Information

This primitive retrieves the File Control Information corresponding to an application loaded onto a
MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Addr,RecNo parameter

PRIM 0x0A, ReadLength

Arguments

The argument ReadLength specifies the number of bytes to read from the FCI record.

Stack Usage

Stack In Addr RecNo

Stack Out Addr RecNo BytesRead

The 2-byte parameter Addr indicates the address where the retrieved FCI record should be written. The 1-
byte parameter RecNo is the record number to be retrieved and BytesRead is the actual number of bytes
read from the FCI record.

A RecNo of zero indicates the current application’s DIR file record (supported from MULTOS 4.5).

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.

The FCI record numbers are indexed from 1.

The FCI record is copied to the segment address specified by the application. The number of bytes copied is
the lesser of the number requested and the actual length of the record.

If a record does not exist the CCR Z flag is set.

Condition Code

 C V N Z

- - - - X - - X

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

164 MULTOS is a registered trademark of MULTOS Limited.

C Set if data retrieved was less than requested, cleared otherwise.
V Unchanged
N Unchanged
Z Set if the specified record does not exist, cleared otherwise

Primitive set and number

Set one, number 0x0A

Example

The following example reads in the whole of the first FCI record into the base of public and sets pLa to the
number of bytes read.

prmGetFCIControlInformation EQU 0x0A

pLA EQU PT[-4]

 LOADA PB[0000] //Load address of public base to stack

 PUSHB 1 //We want record no 1

 PRIM prmGetFCIControlInformation, 64

 STORE pLa, 1 //Copy bytes read into La

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 165

Get Manufacturer Data

This primitive retrieves the Manufacturer Data of a MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Addr parameter

PRIM 0x0B, ReadLength

Arguments

The argument ReadLength specifies the number of bytes to read from the manufacturer data returned.

Stack Usage

Stack In Addr

Stack Out BytesRead

The 2-byte parameter Addr holds the address where the retrieved bytes of Manufacturer Data should be
written. The 1-byte parameter BytesRead is the actual number of Manufacturer Data bytes read.

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.
The Manufacturer Data is copied to the segment address specified by the application. The number of bytes
copied is the lesser of the number requested and the actual length of the data returned. Note that the
exact effect of this primitive is undefined if the destination area includes the top one or two bytes of the
stack.

The structure of the data returned is explained in the ‘APDU Commands’ section under ‘Get Manufacturer
Data’.

Condition Code

 C V N Z

- - - - X - - -

C Set if data retrieved was less than requested, cleared otherwise
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

166 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set one, number 0x0B

Example

The following example gets the Manufacturer Data, writes it to the base of public and sets La to the
number of bytes read.

prmGetManufacturerData EQU 0x0B

pLa EQU PT[-4]

 LOADA PB[0000] //Load public base address to stack

 PRIM prmGetManufacturerData, 22

 STORE pLa,1 //Copy bytes read into La

The following example defines offsets within the returned data and extracts the 6-byte MCD ID from the
data held in dynamic memory. That value is then copied to public.

EXPECTEDLENGTH EQU 22

IC_Maufacturer_ID EQU 0x0000

IC_Type EQU 0x0001

ROM_IC_Details EQU 0x0003

MCD_ID EQU 0x0005

Initialisation_Date EQU 0x000B

Processor_Page_Size EQU 0x0012

Max_Tx_TPDU_Size EQU 0x0013

Max_Rx_TPDU_Size EQU 0x0015

prmMemoryCopy EQU 0x0C

 // stack empty

 LOADA DB[0000] // write data to stack

 PRIM prmGetManufacturerData, EXPECTEDLENGTH

 // copy MCD_ID to Public via Memory Copy Primitive

 PUSHW 6 // length of MCD_ID

 LOADA PB[0000] // destination address

 LOADA DB[MCD_ID] // source address

 PRIM prmMemoryCopy

 // exit setting La to length of MCD ID

 EXITLA 6

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 167

Get Memory Reliability

This primitive requests the status of the current reliability of the non-volatile memory within the MULTOS
device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3 MULTOS 4.3.1 MULTOS 4.3.2

onwards

Syntax

PRIM 0x09

Arguments

None.

Stack Usage

None.

Remarks

The non-volatile memory technology currently used in smart cards Electrically Erasable Programmable
Read-Only Memory, sometimes referred to as EEPROM, has finite life and reliability may vary slightly from
manufacturer to manufacturer. This primitive adds an additional layer of safety for end-of-card handling on
devices that monitor memory reliability. Detecting that memory is only marginally reliable or unreliable
allows applications to handle such situations. The actual mechanism used to monitor memory reliability
varies from implementation to implementation.

There are three possible states. They are:

• Memory is reliable: C and Z are both cleared.

• Memory is marginally reliable: C is cleared and Z is set.

• Memory is unreliable: C is set and Z is cleared.

All MULTOS implementations support this primitive. However, not all implementations monitor memory
reliability. In those cases were memory reliability is not monitored the implementation will always return
the response, "memory is reliable".

Condition Code

 C V N Z

- - - - X - - X

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

168 MULTOS is a registered trademark of MULTOS Limited.

C See Remarks for information on interpreting the value of this flag.
V Unchanged
N Unchanged
Z See Remarks for information on interpreting the value of this flag.

Primitive Set and Number

Set Zero, number 0x09

Example

The following example calls the Get Memory Reliable primitive and returns a response in SW according to
the current level of reliability. This could typically be used either as a specific command, or as a self-check
performed by the application.

prmGetMemoryReliabLe field EQU 0x09

 PRIM prmGetMemoryReliable

 BEQ errMemMarginal

 BLT errMemUnreliable

MemReliable

 //Memory is reliable

 EXIT

errMemMarginal

 //Memory is marginally reliable

 EXITSW 0x65, 0x01

errMemUnreliable

 //Memory is unreliable

 EXITSW 0x65, 0x02

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 169

Get MULTOS Data

This primitive retrieves the MULTOS Data of a MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Addr parameter

PRIM 0x0C, ReadLength

Arguments

The argument ReadLength specifies the number of bytes to read from the manufacturer data returned.

Stack Usage

Stack In Addr

Stack Out BytesRead

The 2-byte parameter Addr holds the address where the retrieved bytes of Manufacturer Data should be
written. The 1-byte parameter BytesRead is the actual number of Manufacturer Data bytes read.

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.

The MULTOS Data is copied to the segment address specified by the application. The number of bytes
copied is the lesser of the number requested and the actual length of the data returned. Note that the
exact effect of this primitive is undefined if the destination area includes the top one or two bytes of the
stack.

The structure of the data returned is explained in the ‘APDU Commands’ section under ‘Get MULTOS Data’.

Condition Code

 C V N Z

- - - - X - - -

C Set if data retrieved was less than requested, cleared otherwise
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

170 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set One, number 0x0C

Example

The following example reads in the first 10 bytes of the MULTOS Data into the base of public and sets La to
the number of bytes read.

prmGetMULTOSData field EQU 0x0C

pLa EQU PT[-4]

 LOADA PB[0000] //Load address of public base to stack

 PRIM prmGetMULTOSData, 10

 STORE pLa,1 //Copy bytes read into La

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 171

Get PIN Data

Gets data relating to the PIN which is either the local application PIN or the Global PIN depending on the
access_list bit settings in the ALC. See Initialise PIN for details.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x86, ElementId

Arguments

ElementId can take the following values:
0x00: PIN Try Counter
0x01: PIN Try Limit
0x02: PIN Status
0x03: PIN Verification Status (new in MULTOS 4.5.2)

Stack Usage

Stack In {empty}

Stack Out Value

Value is the one byte value of the PIN data element selected.

PIN Status has the values

• 0x00 = PIN not initialize

• 0x01 = PIN has been initialized with pin_access_level = 01

• 0x02 = PIN has been initialized with pin_access_level = 00,10 or 11

• 0x03 = PIN status error, implementer specific.

PIN Verification Status has the values

• 0x5A = PIN is unverified

• 0xA5 = PIN is verified

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

172 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set one, number 0x86

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 173

Get Process Event

The Get Process Event primitive can be called by any application to get the number of the application
process event that caused the application to be executed by MULTOS. See the [MDG] for a description of
Application Process Events.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE8

Stack Usage

Stack In {empty}

Stack Out EventID

Remarks

This primitive returns the id of the Application Process Event. Valid values are between 0 and 6 where 0 is
the default. 0 is the only possible value for applications that do not have the required access_list bit set.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0xE8

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

174 MULTOS is a registered trademark of MULTOS Limited.

Get Purse Type

This primitive returns a value indicating the type of Mondex Purse that the device can support.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Addr parameter

PRIM 0x0D, ReadLength

Arguments

The argument ReadLength specifies the number of bytes to read from the manufacturer data returned.

Stack Usage

Stack In Addr

Stack Out BytesRead

The 2-byte parameter Addr holds the address where the retrieved bytes of Purse Type information should
be written. The 1-byte parameter BytesRead is the actual number of bytes read.

Remarks

The ReadLength value is specified using a single byte. Therefore, the maximum length of a returned data is
255 bytes. Note that the effect of the primitive is undefined if ReadLength is zero.

The purse type data is copied to the segment address specified by the application. The number of bytes
copied is the lesser of the number requested and the actual length of the data returned. Note that the
exact effect of this primitive is undefined if the destination area includes the top one or two bytes of the
stack.

The structure of the data returned is explained in the ‘APDU Commands’ section under ‘Get Purse Type’.

Condition Code

 C V N Z

- - - - X - - -

C Set if data retrieved was less than requested, cleared otherwise
V Unchanged
N Unchanged
Z Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 175

Primitive Set and Number

Set One, number 0x0D

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

176 MULTOS is a registered trademark of MULTOS Limited.

Get Random Number

This primitive places an eight byte random number onto the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xC4

Arguments

None.

Stack Usage

Stack In {empty}

Stack Out Bytes

The output parameter Bytes holds the 8-byte block of random data returned by the primitive.

Remarks

The method of random number generation is implementation specific. So, it may be generated using a
hardware assisted 'true' random number generator or it may be generated as a pseudo-random number
from a seed value. In either case, the process is performed in such a way that the secrecy of the number is
guaranteed. It is not possible for any coresident application to determine what number was provided or
will be provided subsequently.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0xC4

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 177

Example

The following example calls the Get Random Number primitive and stores the eight byte random number
in a variable called sDESKey

prmGetRandomNumber EQU 0xC4

sDESKey STATIC BYTE 8

 PRIM prmGetRandomNumber

 STORE sDESKey, 8

 EXIT

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

178 MULTOS is a registered trademark of MULTOS Limited.

Get Replaced Application State

This primitive returns the state of the application that the currently executing application is replacing, if
any.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.x

MULTOS

4.4

MULTOS

4.5.1 / 2

MULTOS

4.5.x

Syntax

PRIM 0xDB

Arguments

None.

Stack Usage

Stack In {empty}

Stack Out State

State is one byte and holds the state of the replaced application as follows:

• 0 = No replaced application exists

• 1 = Replaced application exists but is not readable (bit 13 of its access_list is not set)

• 2 = Replaced application exists and is readable (bit 13 of its access_list is set)

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set one, number 0xDB

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 179

Get Session Size

This primitive returns the size of the application’s session data. It is useful for applications that intend to call the
Update Session Size primitive.

Availability

MULTOS 4 MULTOS 4.2 MULTOS

4.3.x

MULTOS

4.4

MULTOS

4.5.1 / 2

MULTOS

4.5.x

Syntax

PRIM 0x03

Arguments

None

Stack Usage

Stack In {empty}

Stack Out SessionSize

The primitive returns the two-byte value SessionSize being the size of the application’s session data.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0x03

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

180 MULTOS is a registered trademark of MULTOS Limited.

Get Static Size

This primitive returns the total size of the application’s Static memory.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDF, Options

Arguments

The 1 byte argument Options is used to specify the size of the returned Static size as follows.

• Options = 0: 32-bit (4-byte) Static size returned.

• Options = 1: 64-bit (8-byte) Static size returned.

Stack Usage

Stack In {empty}

Stack Out StaticSize

StaticSize specifies the total size of Static in bytes. StaticSizet can either be a 32-bit (4-byte) or a 64-bit (8-
byte) value depending upon the value of Options.

Remarks

The Z flag is cleared to zero if the number of Static bytes is too large to be held in the returned StaticSize,
otherwise it is set to 1.

Condition Code

 C V N Z

- - - - - - - x

C Unchanged.
V Unchanged
N Unchanged
Z Set if no overflow occurred, cleared otherwise.

Primitive set and number

Set one, number 0xDF

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 181

Get Transaction State

This primitive returns whether transaction protection is currently enabled.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0x16

Arguments

None.

Stack Usage

Stack In {empty}

Stack Out Result

Result is one byte and holds the result of the operation as follows:

• 0 = Transaction protection off
• 1 = Transaction protection on

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0x16

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

182 MULTOS is a registered trademark of MULTOS Limited.

GSM Authenticate

This primitive performs the A3A8 algorithm (the default algorithm implemented by MULTOS, if supported,
is the Comp-128 version 2 algorithm) that is used by a SIM application whilst authenticating to the GSM
network.

It is possible that a network-specific algorithm may replace the standard Comp-128 version 2 algorithm by
the loading of a network-specific AMD into the MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xCB

Arguments

None.

Stack Usage

Stack In RANDAddr KeyAddr sreskcAddr

Stack Out {empty}

The 2 byte parameter RANDAddr is the starting address of the 16-byte random challenge to be used.
The 2 byte parameter KeyAddr is the starting address of the 16-byte key to be used.
The 2 byte parameter sreskcAddr is the starting address of the 12-byte result containing the 4-byte SRES
and 8-byte Kc values.

Remarks

This primitive performs the Comp-128 version 2 algorithm as standard but may be replaced by an
alternative network-specific algorithm.

This primitive is only available to an application if “GSM Authenticate” is set on in the application’s
access_list when loaded. This permits a network to restrict the use of the algorithm by third-party
applications.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 183

N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0xCB

Example

The following example declares 16 bytes of static memory to hold the 16 byte Key, the RAND, SRES and Kc
values are held in session. The address for each of these is loaded onto the stack and the GSM
Authenticate primitive is called.

prmGSMAuthenticate EQU 0xCB

sKey STATIC BYTE 16 =

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D

,0x0E,0x0F,0x10

dsreskc DYNAMIC BYTE 16

dRAND DYNAMIC BYTE 16

 LOADA dRAND

 LOADA sKEY

 LOADA dsreskc

 PRIM prmGSMAuthenticate

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

184 MULTOS is a registered trademark of MULTOS Limited.

Initialise PIN

This primitive initialises either the application’s PIN or the Global PIN, depending on the access_list bits of
the ALC.

bit9* bit8* Meaning

0 0 Application PIN / Full access

0 1 Global PIN / Basic access

1 0 Global PIN / Write access

1 1 Global PIN / Full access

* Indexed from bit0

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE5

Arguments

None.

Stack Usage

Stack In InitDataAddr

Stack Out {empty}

The 2 byte parameter InitDataAddr is the start address of the following data block:

a) PIN Reference Data (8 bytes)
b) PIN Length (1 byte)
c) PIN Try Counter (1 byte)
d) PIN Try Limit (1 byte)
e) Checksum (4 bytes).

Checksum is the MULTOS Checksum calculated over fields a-d inclusive.

Remarks

An application is only allowed to Initialise the Global PIN in “Global Basic” mode when it has not been
already initialised.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 185

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0xE5

Example

typedef struct

{

BYTE amPinValue[8];

BYTE bPinLength;

BYTE bPinTryCounter;

BYTE bPinTryLimit;

BYTE amChecksum[4];

} INITIALISE_PIN_PARAMETERS;

#pragma melstatic

INITIALISE_PIN_PARAMETERS params;

// Default PIN value 1234

BYTE defaultPIN[4] = { 0x00, 0x01, 0x02, 0x03 };

void main(void)

{

 //… set params to required values

 memcpy(params.amPinValue,defaultPIN,4);

 params.bPinLength = 4;

 params.bPinTryCounter = 3;

 params.bPinTryLimit = 3;

 // Calculate checksum

 multosChecksum(11,params,params.amChecksum);

 // Call primitive

__push (__typechk (INITIALISE_PIN_PARAMETERS *, params));

__code (__PRIM, 0xE5);

//…

}

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

186 MULTOS is a registered trademark of MULTOS Limited.

Initialise PIN Extended

This is similar to Initialise PIN but allows for alternative PIN data block formats.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0xE4, ElementId

Arguments

ElementId can take the following values:
0x00: Initialise Pin Extended

Stack Usage

Stack In InitDataAddr

Stack Out {empty}

The 2 byte parameter InitDataAddr is the start address of either the following data blocks:

a) PIN Length (1 byte)
b) PIN Reference Data (PIN Length bytes)
c) PIN Try Counter (1 byte)
d) PIN Try Limit (1 byte)
e) Checksum (4 bytes).

Checksum is the MULTOS Checksum calculated over fields a-d inclusive.

Remarks
An application is only allowed to Initialise the Global PIN in “Global Basic” mode when it has not been already
initialised.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged
Z Unchanged.

Primitive set and number

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 187

Set one, number 0xE4

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

188 MULTOS is a registered trademark of MULTOS Limited.

Load CCR

This primitive pushes the Condition Code register onto the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x05

Arguments

None.

Stack Usage

Stack In {empty}

Stack Out CCR

The 1-byte output parameter CCR holds a byte whose value is the same as that of the CCR.

Remarks

This primitive pushes one byte to the stack that contains the same bit settings as the Condition Code
Register.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set Zero, Number 0x05

Example

The following example performs an operation which will have different results on a MULTOS device that
supports signed arithmetic than one which does not. It then loads the Condition Control register onto the

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 189

stack and then performs a bit manipulation to determine if bit 1, the Negative Flag, is set. The code jumps
to a label called exitSigned if it is.

prmLoadCCR EQU 0x05

prmAND EQU 0xC0 // 00000011b

prmCMP EQU 0x00 // 00000000b

 PUSHB 0x00

 PUSHB 0x01

 SUBN ,1

 PRIM prmLoadCCR

 PRIM prmBitManipulateByte, prmAND + prmCMP ,0x06

 BNE isSigned

isNotSigned

 //The MULTOS device does not support signed arithmetic

isSigned

 //The MULTOS device supports signed arithmetic

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

190 MULTOS is a registered trademark of MULTOS Limited.

Lookup

This primitive searches a byte array for the first instance of a specific byte value.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds ByteValue and Address of the search array

PRIM 0x0A

Arguments

None.

Stack Usage

Stack In ByteValue ArrayAddr

Stack Out Offset

The 1-byte parameter ByteValue is the value for which to search within the array. The 2-byte parameter
ArrayAddr is the location of the array to be searched. Finally, the 1-byte output parameter Offset is the
location within the array where the first instance of ByteValue was found.

Remarks

The primitive expects that the first byte of the search array indicates the total length in bytes of the
remainder of the array. For example,

Length, Byte1, Byte2, … ByteN

where the value of Length is N.

The value Offset returned from this primitive is zero based and, continuing from the example above,
counting begins with Byte1.

The CCR Z flag is set to indicate if an instance of ByteValue has been found.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 191

N Unchanged
Z Set if the byte is found in the array, cleared otherwise

Primitive Set and Number

Set Zero, Number 0x0A

Example

The following example searches for the first instance of the byte 0x02 in the array.

prmLookup EQU 0x0A

// Declare the array

// Number of bytes in the array

// Byte Values for the array

sArray STATIC BYTE 5 = 0x04, 0x01, 0x02, 0x03, 0x55

 PUSHB 0x02 //byte value to find

 LOADA sArray //address of the array

 PRIM prmLookup

// Stack now equals: 0x01

To cater for the case where a value is not found, the following could be used:

 PUSHB 0xFF // byte value to find

 LOADA sArray // address of the array

 PRIM prmLookup

 // CCR Z flag is cleared if the value is not found

 JNE Not_Found

Not_Found

 // handling here

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

192 MULTOS is a registered trademark of MULTOS Limited.

Lookup Word

This primitive searches a byte array for the first instance of a specific 2 byte value.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds WordValue and Address of the search array

PRIM 0x14

Arguments
None

Stack Usage

Stack In WordValue ArrayAddr

Stack Out Offset

The 2-byte parameter WordValue is the value for which to search within the array. The 2-byte parameter
ArrayAddr is the location of the array to be searched. Finally, the 2-byte output parameter Offset is the
location within the array where the first instance of WordValue was found (or the first instance of either a
LSB or MSB match of WordValue if no full match was found).

Remarks

The primitive expects that the first word of the search array indicates the number of words in the
remainder of the array. For example,

Length, Word1, Word2, … WordN

where the value of Length is N.

The value Offset returned from this primitive is zero based and, continuing from the example above,
counting begins with Word1.

The CCR Z and C flags are changed to indicate whether a full or partial match was founds as follows. Note
that a full match takes precedence over a partial match.

• Full match of WordValue: C = 1 and Z = 1

• Partial match of LSB of WordValue only: C = 0 and Z = 1

• Partial match of MSB of WordValue only: C = 1 and Z = 0

• No match (full or partial): C = 0 and Z = 0

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 193

Condition Code

 C V N Z

- - - - X - - X

C Changed as described above
V Unchanged
N Unchanged
Z Changed as described above

Primitive Set and Number
Set Zero, Number 0x14

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

194 MULTOS is a registered trademark of MULTOS Limited.

Manage Stack

This primitive manages the stack belonging to the executing application. It is intended to be used in
conjunction with the Exit to MULTOS and Restart primitive.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 / 2 MULTOS 4.5.x

Syntax

PRIM 0x07, Options

Arguments

Options defines the operation to perform on the stack as follows:

 0 = Save the application’s stack to an internal temporary buffer
 1 = Restore the application’s stack from the saved copy

Stack Usage

Stack In {empty}

Stack Out {empty}

Remarks

An application can call this primitive after calling Exit to MULTOS and Restart but before exiting back to
MULTOS to save the contents of the application’s stack. When the application restarts it can call this primitive
again to restore the state of its stack. This allows the application to resume execution at the point just after
when it exited to MULTOS.

To prevent stack data leakage between applications MULTOS automatically deletes the saved stack if the exit to
MULTOS results in the executing application being deleted.

This primitive abends under the following conditions:

• Options = 0 (save stack) and the application has not called Exit to MULTOS and Restart previously.

• Options = 1 (restore stack) and the application has not saved the stack previously.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 195

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set one, number 0x07

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

196 MULTOS is a registered trademark of MULTOS Limited.

Memory Compare

This primitive compares two blocks of bytes to determine if they hold the same data.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds length, addr1 and addr2 parameters

PRIM 0x0B

Arguments

None.

Stack Usage

Stack In Length Addr1 Addr2

Stack Out {empty}

The 2-byte parameter Length gives the size of the memory areas to be compared. The 2-byte values Addr1
and Addr2 are the locations of the areas.

Remarks

The comparison performed by this primitive is based on subtraction. The second operand, the area
corresponding to the address on the top of the stack, is subtracted from the first. No data is modified, but
the Condition Code Register is set according to the result of the operation.

There are three possible results of the comparison of blocks of size Length. They and the CCR setting used
to indicate that result are:

• When the byte block at Addr1 > the byte block at Addr2, both CCR C and CCR Z flags are cleared.

• When the byte block at Addr1 = the byte block at Addr2, the CCR C flag is cleared and CCR Z flag is
set

• When the byte block at Addr1 < the byte block at Addr2, the CCR C flag is set and CCR Z flag is
cleared.

Where the number of bytes to be compared is a compile time constant and Length is no more than 255
bytes the primitive Memory Compare Fixed Length may be used.

Condition Code

 C V N Z

- - - - X - - X

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 197

C Set or cleared as above
V Unchanged
N Unchanged
Z Set or cleared as above

Primitive Set and Number

Set Zero, Number 0x0B

Example

The following example declares two four byte blocks which in a real application would represent PIN
numbers. sPIN is the copy of the PIN in the applications static and pPIN is the copy of the PIN in the public
segment sent as part of an APDU. The memory compare primitive is called to compare whether the two
PIN numbers are the same.

prmMemoryCompare EQU 0x0B

pPIN PUBLIC BYTE 2

sPIN STATIC BYTE 2 = 0x12, 0x34

 PUSHW 2

 LOADA sPIN

 LOADA pPIN

 PRIM prmMemoryCompare

 JNE errPINdoesNotMatch

 EXIT

errPINdoesNotMatch

 EXITSW 0x65,0x81

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

198 MULTOS is a registered trademark of MULTOS Limited.

Memory Compare Enhanced

This primitive compares two blocks of bytes.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0x05, Mode

Arguments

Mode defines the comparison mode as follows:

 0 = Equality only test
 1 = Equality and greater/less than test.

Stack Usage

Stack In Length Addr1 Addr2

Stack Out Result

The 2-byte parameter Length gives the size of the memory areas to be compared. The 2-byte values Addr1
and Addr2 are the locations of the areas. The 2-byte Result is the result of the comparison.

Remarks

The operation of this primitive is controlled by the Mode value.

Equality Only Test
The two memory areas are tested for equality and the Result can be one of the following two values.

 0x5555 = blocks not equal
 0xAAAA = blocks equal

Equality and Greater/Less Than Test
The comparison performed by this primitive is based on subtraction. The second operand, the area
corresponding to the address on the top of the stack, is subtracted from the first (no data is modified) and
the Result can be one of the following two values.

 0x5A5A = byte block at Addr1 > byte block at Addr2
 0xA5A5 = byte block at Addr1 < byte block at Addr2
 0xAAAA = blocks equal

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 199

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set one, number 0x05

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

200 MULTOS is a registered trademark of MULTOS Limited.

Memory Compare Fixed Length

This primitive is used to compare two blocks of bytes of a fixed length.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Addr1, Addr2 parameter

PRIM 0x0F, Length

Arguments

The argument Length is the number of bytes in each of the byte blocks.

Stack Usage

Stack In Addr1 Addr2

Stack Out {empty}

The 2-byte values Addr1 and Addr2 are the locations of the areas to be compared.

Remarks

The Length value is specified using a single byte. Therefore, the maximum length of a block is 255 bytes.

The comparison performed by this primitive is based on subtraction. The second operand, the area
corresponding to the address on the top of the stack, is subtracted from the first. No data is modified, but
the Condition Code Register is set according to the result of the operation.

There are three possible results of the comparison of blocks of size Length. They and the CCR setting used
to indicate that result are:

• When the byte block at Addr1 > the byte block at Addr2, both CCR C and CCR Z flags are cleared.

• When the byte block at Addr1 = the byte block at Addr2, the CCR C flag is cleared and CCR Z flag is
set

• When the byte block at Addr1 < the byte block at Addr2, the CCR C flag is set and CCR Z flag is
cleared.

The primitive works correctly even if the blocks overlap

Condition Code

 C V N Z

- - - - X - - X

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 201

C Set or cleared as above
V Unchanged
N Unchanged
Z Set or cleared as above

Primitive Set and Number

Set One, Number 0x0F

Example

The following example declares two four byte blocks which in a real application would represent PIN
numbers. sPIN is the copy of the PIN in the applications static and pPIN is the copy of the PIN in the public
segment sent as part of an APDU. The Memory Compare Fixed Length primitive is called to compare
whether the two PIN numbers are the same.

prmMemoryCompareFixedLength EQU 0x0F

pPIN PUBLIC BYTE 2

sPIN STATIC BYTE 2 = 0x12, 0x34

 LOADA sPIN

 LOADA pPIN

 PRIM prmMemoryCompareFixedLength, 2

 JNE errPINdoesNotMatch

 EXIT

errPINdoesNotMatch

 EXITSW 0x65,0x81

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

202 MULTOS is a registered trademark of MULTOS Limited.

Memory Copy

This primitive copies a block of bytes from one location to another.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Length, DestAddr, SourceAddr parameters

PRIM 0x0C

Arguments

None.

Stack Usage

Stack In Length DestAddr SourceAddr

Stack Out {empty}

All of the parameters are 2 bytes in size. The value Length is the number of bytes to copy. The values
DestAddr and SourceAddr are, respectively, the locations to where and from where the data is copied.

Remarks

Where the number of bytes to be copied is a compile time constant and Length is no more than 255 bytes
the primitive Memory Copy Fixed Length may be used.

This primitive works correctly even if the source and destination blocks overlap.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, number 0x0C

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 203

Example

The following example copies a byte block from the bottom of Public to a variable called sName.

prmMemoryCopy EQU 0x0C

pLc EQU PT[-8]

sName STATIC BYTE 0x20

 LOAD pLc,2 //Length of byte block to copy

 LOADA sName //Address to copy to (destination)

 LOADA PB[0000] //Address to copy from (source)

 PRIM prmMemoryCopy

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

204 MULTOS is a registered trademark of MULTOS Limited.

Memory Copy Additional Static

This primitive copies a block of memory from a segment address to an area of Static, from an area of Static
to a segment address or from one area of Static to another area of Static. Either 32-bit or 64-bit Static
addressing is supported.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDD, Options

Arguments

The 1 byte argument Options is used to specify the direction of the copy, whether the copy is atomic and
the Static addressing mode as follows.

b7 b6 b5 b4 b3 b2 b1 b0 Meaning

x x RFU RFU RFU RFU 0 0 Copy data from segment address to Static
offset

x x RFU RFU RFU RFU 0 1 Copy data from Static offset to segment
address

x x RFU RFU RFU RFU 1 0 Copy data from Static offset to Static
offset

x x RFU RFU RFU RFU 1 1 RFU

0 x RFU RFU RFU RFU x x Non-atomic copy

1 x RFU RFU RFU RFU x x Atomic copy

x 0 RFU RFU RFU RFU x x 32-bit Static addressing mode

x 1 RFU RFU RFU RFU x x 64-bit Static addressing mode

Stack Usage (copy from segment address to Static offset)

If Options indicates that the copy is from a segment address to a Static offset then the stack will contain
the following:

Stack In Length StaticOffset SegAddr

Stack Out {empty}

The 2-byte Length identifies the number of bytes to copy.

StaticOffset specifies the Static offset of the destination. StaticOffset can either be a 32-bit (4-byte) or a
64-bit (8-byte) value depending upon the specified Static addressing mode.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 205

The 2-byte SegAddr specifies the segment address of the source.

Stack Usage (copy from Static offset to Segment address)

If Options indicates that the copy is from a Static offset to a segment address then the stack will contain
the following:

Stack In Length SegAddr StaticOffset

Stack Out {empty}

The 2-byte Length identifies the number of bytes to copy.

The 2-byte SegAddr specifies the segment address of the destination.
StaticOffset specifies the Static offset of the source. StaticOffset can either be a 32-bit (4-byte) or a 64-bit
(8-byte) value depending upon the specified Static addressing mode.

Stack Usage (copy from Static offset to Static offset)

If Options indicates that the copy is from a Static offset to a Static offset then the stack will contain the
following:

Stack In Length StaticOffset2 StaticOffset1

Stack Out {empty}

Length identifies the number of bytes to copy. This length can either be a 32-bit (4-byte) or a 64-bit (8-
byte) value depending upon the specified Static addressing mode.

StaticOffset2 specifies the Static offset of the destination and StaticOffset1 specifies the Static offset of the
source. StaticOffset1 and StaticOffset2 can be a 32-bit (4-byte) or a 64-bit (8-byte) value depending upon
the specified Static addressing mode.

Remarks

Invalid segment or Static addresses will cause an abend. The copy is successful even if the source and
destination areas overlap.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

206 MULTOS is a registered trademark of MULTOS Limited.

Primitive set and number

Set one, number 0xDD

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 207

Memory Copy Fixed Length

This primitive copies a block of bytes of a fixed length from one location to another.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds DestAddr, SourceAddr parameters

PRIM 0x0E, Length

Arguments

The argument Length is the number of bytes to copy.

Stack Usage

Stack In DestAddr SourceAddr

Stack Out {empty}

All of the parameters are 2 bytes in size. The values DestAddr and SourceAddr are, respectively, the
locations to where and from where the data is copied.

Remarks

The Length value is specified using a single byte. Therefore, the maximum length of a block is 255 bytes.

This primitive works correctly even if the blocks overlap.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set One, Number 0x0E

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

208 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example copies the 32 bytes at the bottom of Public to a variable called sName.

prmMemoryCopyFixedLength EQU 0x0E

sName STATIC BYTE 32

 LOADA sName //Address to copy to (destination)

 LOADA PB[0000] //Address to copy from (source)

 PRIM prmMemoryCopyFixedLength, 32

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 209

Memory Copy From Replaced Application

This primitive allows for the currently executing application to copy the Session or Static data belonging to the
application that it is replacing.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1/2 MULTOS 4.5.x

Syntax

// Stack holds Length, Destination, Offset parameters

PRIM 0x06 Options

Arguments

Options:

• Bit 0: source data (0 = session, 1 = Static)

• Bit 6: Static addressing mode (0 = 32 bit, 1= 64 bit)

• Bit 7: atomicity (0 = non-atomic, 1 = atomic)

Stack Usage

Stack In Length DestAddr SourceAddr

Stack Out {empty}

Offset is the offset into the replaced application’s session or Static data. If the session data is being read then
the offset is a 16-bit value, otherwise its size depends upon the addressing mode (32-bit or 64-bit).

Destination is a 16-bit value and holds the destination segment address. Length is a 16-bit value and holds the
length of the data to read.

This primitive abends if no readable replaced application exists or if the offset/length values are invalid for the
replaced application.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0x06

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

210 MULTOS is a registered trademark of MULTOS Limited.

Memory Copy Non-Atomic

This primitive copies a block of bytes from one location to another. If the byte block is copied into the
static area, data item protection function will be disabled if possible.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Length, DestAddr, SourceAddr parameters

PRIM 0x0F

Arguments

None.

Stack Usage

Stack In Length DestAddr SourceAddr

Stack Out {empty}

All of the parameters are 2 bytes in size. The value Length is the number of bytes to copy. The values
DestAddr and SourceAddr are, respectively, the locations to where and from where the data is copied.

Remarks

This primitive works correctly even if the source and destination blocks overlap.

Where the number of bytes to be copied is a compile time constant and Length is no more than 255 bytes
the primitive Memory Copy Non-Atomic Fixed Length may be used.

When copying into the static memory area with this primitive, the copying will be performed more quickly
than with Memory Copy primitive as the data items are not protected.

This primitive is a request for a non-atomic memory copy. Non-atomic means that the data will be written
in EEPROM page size blocks (see [MIR] for page size information for a specific implementation) when
complete pages are available. If the data being copied results in writing to only a part of a page, then
MULTOS will revert to an atomic copy. Whilst this copy operation may be faster the data in the destination
will not be protected if power-off occurred during the copying to the static area. MULTOS will always
guarantee the integrity of data other than the data being copied.

Condition Code

 C V N Z

- - - - - - - -

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 211

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, number 0x0F

Example

The following example shows how the primitive can be used as well as explaining how the copy takes place.
The example will assume a page size of 32 bytes and that the copy destination is at the start of a page.

prmMemoryCopyNonAtomic EQU 0x0F

sDataBlock STATIC BYTE 270

pData PUBLIC BYTE 270

 PUSHW 0x010E // length of 270 bytes to be copied

 LOADA sDataBlock // Address to copy to (destination)

 LOADA pData field // Address to copy from (source)

 PRIM prmMemoryCopyNonAtomic

The memory copy would then copy 8 pages of data as 32 byte blocks. The remaining 24 bytes do not
constitute a full page and would be copied atomically.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

212 MULTOS is a registered trademark of MULTOS Limited.

Memory Copy Non-Atomic Fixed Length

This primitive copies a block of bytes of a fixed length from one location to another. If the byte block is
copied into the static area, data item protection function will be disabled if possible.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds estAddr, SourceAddr parameters

PRIM 0x13, Length

Arguments

The argument Length is the number of bytes to copy.

Stack Usage

Stack In DestAddr SourceAddr

Stack Out {empty}

All of the parameters are 2 bytes in size. The values DestAddr and SourceAddr are, respectively, the
locations to where and from where the data is copied.

Remarks

This primitive works correctly even if the source and destination blocks overlap.

When copying into the static memory area with this primitive, the copying will be performed more quickly
than with Memory Copy primitive as the data items are not protected.

This primitive is a request for a non-atomic memory copy.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 213

Primitive Set and Number

Set Zero, number 0x13

Example

The following example shows how the primitive can be used as well as explaining how the copy takes place.
The example will assume a page size of 32 bytes and that the copy destination is at the start of a page.

prmMemoryCopyNonAtomicFixedLength EQU 0x13

sDataBlock STATIC BYTE 120

pData PUBLIC BYTE 120

 LOADA sDataBlock // Address to copy to (destination)

 LOADA pData field // Address to copy from (source)

 PRIM prmMemoryCopyNonAtomicFixedLength, 0x78

The memory copy would then copy 3 pages of data as 32 byte blocks. The remaining 24 bytes do not
constitute a full page and would be copied atomically.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

214 MULTOS is a registered trademark of MULTOS Limited.

Memory Fill

This primitive fills a block of memory with a specific byte value.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x19

Stack Usage

Stack In Value Length Address

Stack Out {empty}

The 1-byte Value identifies the value to fill the specified block with.

The 2-byte Length identifies the number of bytes to fill.

The 2-byte Address specifies the segment address of the block to be filled

Remarks

Invalid block will cause an abend.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged.

Primitive set and number

Set zero, number 0x19

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 215

Memory Fill Additional Static

This primitive fills a block of Static memory with a specific byte value. Either 32-bit or 64-bit Static
addressing is supported.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDE, Options

Arguments

The 1 byte argument Options is used to specify whether the fill is atomic and the Static addressing mode as
follows.

b7 b6 b5 b4 b3 b2 b1 b0 Meaning

0 x RFU RFU RFU RFU RFU RFU Non-atomic fill

1 x RFU RFU RFU RFU RFU RFU Atomic fill

x 0 RFU RFU RFU RFU RFU RFU 32-bit Static addressing mode

x 1 RFU RFU RFU RFU RFU RFU 64-bit Static addressing mode

Stack Usage

Stack In Value Length StaticOffset

Stack Out {empty}

The 1-byte Value identifies the value to fill the specified area of Static with.

Length identifies the number of bytes to fill. This length can either be a 32-bit (4-byte) or a 64-bit (8-byte)
value depending upon the specified Static addressing mode.

StaticOffset specifies the Static offset of the destination. StaticOffset can either be a 32-bit (4-byte) or a
64-bit (8-byte) value depending upon the specified Static addressing mode.

Remarks

Invalid Static addresses will cause an abend.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

216 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged.

Primitive set and number

Set one, number 0xDE

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 217

Modular Exponentiation / RSA Sign

This primitive performs a modular exponentiation operation, the basis of the RSA algorithm. This version
of the primitive will execute with full countermeasures to protect the algorithm.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack: eLen, mLen, eAddr, mAddr, inAddr, outAddr

PRIM 0xC8

Arguments

None.

Stack Usage

Stack In eLen mLen eAddr mAddr inAddr outAddr

Stack Out {empty}

All parameters are 2 bytes in size. The values eLen and mLen represent the length of the exponent and
modulus respectively. These lengths represent the size in bytes. The value eAddr is the location of the
exponent of size eLen, while mAddr is the location of the modulus of size mLen. The addresses inAddr and
outAddr are the location of the input to the modular exponentiation operation and the address to where
the output will be written.

Remarks

This primitive performs modular exponentiation operation and the result is written at the specified address
outAddr.

Moduli with length that is not a multiple of 8 bits are padded at the least significant end with bits 0. So, a
1023-bit modulus would have the least significant bit of the least significant byte set to 0.

The size of the input and output is considered to the same as that of the modulus. They are all mLen in size.

The primitive will function normally if inAddr and outAddr point to the same memory area. That is to say
the output can overwrite the input.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

218 MULTOS is a registered trademark of MULTOS Limited.

In order to enable modular exponentiation to operate correctly there are a number of general conditions
that must be met:

• The modulus must be odd.

• The base value must be less than the modulus.

• The exponent must be less than the modulus.

• The length of the exponent must be less than or equal to the length of the modulus.

There are some implementation specifics that may impact on the usage of this primitive. For example, the
most significant byte of the modulus should not be zero although some platforms may permit it. As
another example, some implementations may only work on fixed key lengths. It may also be the case that
an implementation may provide optimised support for an exponent length of 1 with a value of 3 and from
MULTOS 4.2 one may also provide optimised support for an exponent length of 3 and a value of 65537. See
the MULTOS Implementation Report [MIR] for specific information.

Primitive set and number

Set zero, number 0xC8

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example shows how to use the modular exponentiation primitive to encrypt input using the
private exponent. Here the 72-byte input value is found in public and the output overwrites it.

prmModularExponentiation EQU 0xC8

sD STATIC BYTE 64 // 64-byte private exponent

sN STATIC BYTE 72 // 72-byte modulus

 PUSHW 64 // exponent size

 PUSHW 72 // modulus size

 LOADA sD // exponent location

 LOADA sN // modulus location

 LOADA PB[0] // input location

 LOADA PB[0] // output location

 PRIM prmModularExponentiation

 EXITLA 72

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 219

Modular Exponentiation CRT / RSA Sign CRT

This primitive performs a modular exponentiation using the Chinese Remainder Theorem algorithm.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack: dpdqLen, dpdqAddr pquAddr, inAddr, outAddr

PRIM 0xC9

Arguments

None.

Stack Usage

Stack In dpdqLen dpdqAddr pquAddr inAddr outAddr

Stack Out {empty}

All of the parameters are 2 bytes in size. The value held in dpdqLen is the size in bytes of the area located
at dpdqAddr, where the dp value concatenated to the dq value is held. The parameter pquAddr is the
location of the memory area where the values p, q and u are concatenated in that order. The parameters
inAddr and outAddr are respectively the location of the input and the location where the output of the
operation is written.

Remarks

This primitive performs modular exponentiation operation, where the operands are held in CRT format,
and the result is written at the specified address outAddr.

Moduli with length that is not a multiple of 8 bits are padded at the least significant end with bits 0. So, a
1023-bit modulus would have the least significant bit of the least significant byte set to 0.

The size of the input, output and public modulus is considered to the value given in dpdqLen.

The primitive will function normally if inAddr and outAddr point to the same memory area. That is to say
the output can overwrite the input.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

220 MULTOS is a registered trademark of MULTOS Limited.

In order to enable modular exponentiation CRT to operate correctly there are a number of general
conditions that must be met:

• The public modulus size as measured in bytes and given in dpdqLen must be even

• p and q must be odd primes of size dpdqLen / 2

• The public modulus is equal to p * q

• u is the inverse of q modulo p; i.e., (q * u) modulo (p) 1 modulo (p). This means that u < p. The
value u is held in a memory area of size dpdqLen / 2

• dp is the value of the secret exponent modulo (p – 1) and is of size dpdqLen / 2

• dq is the value of the secret exponent modulo (q – 1) and is of size dpdqLen / 2

The most significant byte of p and q should not be zero. Some platforms may permit leading zero bytes,
but this cannot be guaranteed.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0xC9

Example

The following example uses the modular exponentiation CRT primitive to encrypt a 72-byte value held in
public memory. The result of the operation overwrites the input.

ModularExponentiationCRT EQU 0xC9

sMod STATIC BYTE 72

sDPDQ STATIC BYTE 108

// following areas considered adjacent: sP | sQ | sU

sP STATIC BYTE 36

sQ STATIC BYTE 36

sU STATIC BYTE 36

 PUSHW 72 // Length of modulus

 LOADA sDPDQ // Address of dp|dq

 LOADA sP // Address of p|q|u

 LOADA PB[0] // Address of base

 LOADA PB[0] // Address of result

 PRIM ModularExponentiationCRT

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 221

Modular Exponentiation CRT Protected / RSA Sign CRT Protected

This primitive performs a modular exponentiation using the Chinese Remainder Theorem. The keys used
however are stored in an enciphered form in memory and must be deciphered before use. It also provides
a means to protect plaintext keys for subsequent use.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xDC

Arguments

None.

Stack Usage

Stack In dpdqLen dpdqAddr pquAddr inAddr outAddr

Stack Out {empty}

The 2-byte parameter dpdqLen is the length in bytes of the modulus, which is even.
The 2-byte parameter dpdqAddr is the segment address of dp concatenated to dq.
The 2-byte parameter pquAddr is the segment address of p, q and u.
The 2-byte parameter inAddr is the segment address of the base bytes OR the address of dpdq if the keys
are to be protected for subsequent use by the primitive.
The 2-byte parameter outAddr is the segment address to write the result to OR the address of pqu if the
keys are to be protected for subsequent use by the primitive.

Remarks

This primitive calculates an exponent modulo a modulus, using the Chinese Remainder Theorem (CRT).
The result (the base to the power of the exponent, modulo the modulus) is written at the specified
segment address. The values of p and q are the two large prime numbers that were originally chosen to
generate the key. The size of p and q is equal to half the length of the modulus. The remaining parameters
for this primitive may be calculated from the values of p and q.

u inverse of q modulo p, of length dpdqLen / 2
dp secret exponent modulo p - 1, of length dpdqLen / 2
dq secret exponent modulo q - 1, of length dpdqLen / 2

A complete description of the Chinese Remainder Theorem and Cryptography is beyond the scope of this
document. Please refer to a more specialised book on cryptography for more details on Chinese
Remainder Theorem.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

222 MULTOS is a registered trademark of MULTOS Limited.

In order for Chinese Remainder Theorem to operate correctly there are certain conditions that must be
satisfied.

1. N = p * q
2. q>2 & p>2
3. p and q must both be odd.
4. The most significant byte of p and q should not be zero. Some platforms may permit leading zero

bytes, but this cannot be guaranteed on each platform. Primes with length not a multiple of 8 bits
are left padded with bits 0.

5. u must be less than p
6. u = (q * u) mod (p) = 1

The keys used (p,q,u,dp,dq) are stored as protected data items (for example enciphered). The method
used is implementation specific and not described here. Before use, the implementation will reverse the
effects of this encipherment to recover the actual keys to be used. This will be done without changing the
stored value of the keys.
In order to protect the keys in the first place however, it is necessary for the application to ask the
implementation to perform the necessary transformation and store the keys in the protected form. This is
done by calling the primitive where the inAddr is set to dpdqAddr AND outAddr is set to pquAddr. When
this happens, the implementation does NOT invoke the modular exponentiation function but instead
simply transform the keys into their protected form and writes them back to the addresses specified by
inAddr and outAddr.

If the primitive is called with inAddr set to pguAddr and outAddr set to dpdqAddr and passed protected
keys, the original unprotected keys are be obtained and written back over the corresponding input data.

If inAddr points to dpdqAddr (or pquAddr) but outAddr does not point to pquAddr (or dpdqAddr) or
outAddr points to pquAddr (or dpdqAddr) but inAddr does not point to dpdqAddr (or pquAddr) then the
primitive will perform a Modular Exponentiation using the protected keys specified in pquAddr and
dpdpAddr and either exponentiating the protected input keys to produce the output result (if inAddr is
pquAddr or dpdqAddr) or overwriting the protected keys with the result (if outAddr is pquAddr or
dpdqAddr)

Note: Modular Exponentiation CRT in some implementations may only work on fixed key lengths. See the
MULTOS Implementation Report for more details.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged.

Primitive Set and Number

Set Zero, number 0xDC

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 223

Example

The following example uses the modular exponentiate CRT primitive to perform an encipher or decipher.
prmModExpCRTProtected EQU 0xDC

sMod STATIC BYTE 64

sDPDQ STATIC BYTE 96

sP STATIC BYTE 32

sQ STATIC BYTE 32

sU STATIC BYTE 32

sBase STATIC BYTE 64

//---

//Call primitive to protect the keys

// (word) Length of Modulus

// (word) Address of dp|dp

// (word) Address of p|q|u

// (word) Address of dp|dq

// (word) Address of p|q|u

//---

 PUSH 0x64 //Length of modulus

 LOADA sDPDQ //Address of dp|dq

 LOADA sP //Address of p|q|u

 LOADA sDPDQ //Address of dp|dq

 LOADA sP //Address of p|q|u

 PRIM prmModExpCRTProtected // call primitive

//---

//Now call the primitive to perform a CRT exponentiation

//using the previously protected keys

 PUSH 0x64 //Length of modulus

 LOADA sDPDQ //Address of dp|dq

 LOADA sP //Address of p|q|u

 LOADA sBase //Address of base

 LOADA PB[0] //Address of result

 PRIM prmModExpCRTProtected // call primitive

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

224 MULTOS is a registered trademark of MULTOS Limited.

Modular Inverse

This primitive calculates the modular inverse of a value. A modular inverse of an integer b (modulo m) is
the integer b-1 such that b b-1 = 1 (mod m).

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD0, Prime

Arguments

The 1-byte argument Prime is set to 1 if the modulus used is prime. Otherwise, it is set to 0.

Stack Usage

Stack In
Stack Out

mLen modulusAddr inLen inAddr outAddr

{empty}

All the parameters are 2 bytes in size. The parameter mLen states the length in bytes of the modulus value,
which can be found at modulusAddr. The value inLen gives the length of the input data found at inAddr.
The result of the modular inverse calculation is written to outAddr.

Remarks

The size of the output held at outAddr is considered to the value given in mLen.

The value calculated is one such that the value stored at the segment address inAddr modulo the modulus
stored at the segment address modulusAddr is congruent to 1 modulo the supplied modulus.

In order to calculate the modular inverse the input value and the modulus must be co-prime. If they are
not the CCR Z flag is set and no value is written to outAddr.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 225

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the modular inverse cannot be calculated, cleared otherwise

Primitive Set and Number

Set One, Number 0xD0

Example

The following example shows how to use the Modular Inverse primitive to calculate the secret key of an
RSA key set with a 128-byte modulus and a public exponent of 3. The primitive call below calculates the
modular inverse of 3 with respect to the modulus ((P – 1) * (Q – 1)).

prmModInv EQU 0xD0

prmMultiplyN EQU 0x10

dModulus DYNAMIC BYTE 128

sPrimeP STATIC BYTE 64 // The first prime

sPrimeQ STATIC BYTE 64 // The second prime

 LOAD sPrimeP, 64 // Load P

 DECN ,64 // P - 1

 LOAD sPrimeQ, 64 // Load Q

 DECN ,64 // Q -1

 PRIM prmMultiplyN, 64 // (P – 1) * (Q – 1)

 STORE dModulus, 128 // move result to variable

//---

//Call Modular Inverse to calculate secret key

//---

 PUSHB 3 // Public Exponent

 PUSHW 128 // Size of modulus

 LOADA dModulus // Address of modulus

 PUSHW 1 // Size of input

 LOADA DT[-7] // Address of input

 LOADA PB[0] // Address of destination

 PRIM prmModInv, 0x00 // Calculate inverse

 BEQ Invalid // Invalid if no inverse

 EXITLA 128 // Return result

Invalid

 EXITSW 0x9E, 0x20 // No inverse possible

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

226 MULTOS is a registered trademark of MULTOS Limited.

Modular Multiplication

This primitive multiples two operands and reduces the result of the multiplication modulo a given modulus.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xC2

Arguments

None.

Stack Usage

Stack In lenMod addrOp1 addrOp2 addrMod

Stack Out {empty}

All the parameters are 2 bytes in size. The parameter lenMod is the size of the modulus supplied and
located at addrMod. The parameters addrOp1 and addrOp2 are the locations of the multiplicands.

Remarks

This primitive calculates a product modulo a modulus, that is (Operand1 * Operand2) mod modulus. The
result overwrites the first operand.

Both operands must represent values that are less than that of the modulus.

The modulus and both operands are considered to be of size lenMod.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 227

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0xC2

Examples

The following example uses modular multiplication where the operands are in public memory.

prmModularMultiplication EQU 0xC2

MODSIZE EQU 72

sModulus STATIC BYTE MODSIZE

 PUSHW MODSIZE

 LOADA sModulus

 LOADA PB[0]

 LOADA PB[MODSIZE]

 PRIM prmModularMultiplication

 EXITLA MODSIZE

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

228 MULTOS is a registered trademark of MULTOS Limited.

Modular Reduction

This primitive reduces an operand with respect to a modulus.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xC3

Stack Usage

Stack In lenOp lenMod addrOp addrMod

Stack Out {empty}

All parameters are 2 bytes in size. The parameters lenOp and lenMod state the size of the operand to be
reduced and the modulus respectively. The location of the operand is given in addrOp while the modulus
location is given in addrMod.

Remarks

This primitive calculates Operand mod Modulus. The result is written to addrOp and will be of length
lenMod.

If lenOp is less than lenMod the result is undefined.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0xC3

Example

The following example reduces a value with respect to a 96-byte modulus. The value to be reduced is sent
as command data.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 229

prmModReduction EQU 0xC3

pLC EQU PT[-8]

MODSIZE EQU 96

sModulus STATIC BYTE MODSIZE

// check that incoming data length >= 96

CMPW pLC, MODSIZE

JLT err_OperandSize

// stack parameters set

LOAD pLC, 2

PUSHW MODSIZE

LOADA PB[0]

LOADA sModulus

PRIM prmModReudction

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

230 MULTOS is a registered trademark of MULTOS Limited.

MultiplyN

This primitive multiplies two unsigned blocks of bytes from the stack together and leaves the result on the
stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds Operand1, Operand2

PRIM 0x10, Length

Arguments

The argument Length indicates the size of the multiplicands.

Stack Usage

Stack In Operand1 Operand2

Stack Out Output

The parameters Operand1 and Operand2 are the values of size Length that are to be multiplied. The output
parameter Output holds the result of the multiplication is twice the size of Length.

Remarks

This primitive performs unsigned multiplication of two numbers. The result replaces the two operands at
the top of stack.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

Primitive Set and Number

Set One, Number 0x10

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 231

Example

The following example pushes two words onto the stack and multiplies them together. The result is left on
the stack at the end of the example.

prmMultiplyN EQU 0x10

PUSHW 0x0100 //Stack: 01,00

PUSHW 0x0002 //Stack: 01,00,00,02

PRIM prmMultiplyN, 2 //Stack: 00,00,02,00

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

232 MULTOS is a registered trademark of MULTOS Limited.

Pad

This primitive adds padding to a non-padded message.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x15, PadScheme

Arguments

The 1-byte argument PadScheme specifies the padding scheme, as follows.

• 0x01: The message is appended with the byte 0x80 and it is then padded with zero or more bytes of
0x00 to the next multiple of BlockLen bytes.

• 0x02: The message is appended with the byte 0x80 and it is then padded with one or more bytes of
0x00 to the next multiple of BlockLen bytes.

Stack Usage

Stack In BlockLen lenMsg addrMsg

Stack Out lenMsgPadded

The 1-byte parameter BlockLen specifies the padding block length in bytes.
The 2-byte parameter lenMsg specifies the length of the message to be padded in bytes.
The 2-byte parameter addrMsg specifies the segment address of the message to be padded.
The 2-byte result lenMsgPadded is the length in bytes of the padded message.

Remarks

This primitive pads a message to a specific block size according to a specified padding scheme.
The padding is added to the end of the specified block.
The calling application needs to ensure that the total size of the memory area in which the message is held
in sufficiently large to allow the padding to be added.
The primitive supports block lengths of 8 and 16 bytes.
The primitive abends, if an invalid PadScheme value is supplied or if BlockLen is not supported by the
implementation.

Condition Code

 C V N Z

- - - - - - - -

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 233

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set One, Number 0x15

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

234 MULTOS is a registered trademark of MULTOS Limited.

Platform Optimised Checksum

This primitive calculates a checksum using a platform-specific optimised algorithm.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x89

Arguments

None.

Stack Usage

Stack In Length BlockAddr

Stack Out Checksum

The 2-byte parameter Length specifies the length in bytes of the block of memory to be checksummed.
The 2-byte parameter BlockAddr specifies the segment address of the block of memory to be
checksummed.
The 4-byte parameter Checksum is the resultant four byte checksum.

Remarks

This primitive generates a four byte checksum over the block of memory starting at BlockAddr and of
length Length using a performance optimised platform specific method.

If the block is in Static, and transaction protection is on, the checksum calculation takes pending writes into
account. This is an exception to the general rule that pending writes are not visible to the application until
they are committed.

There are no specific guarantees about the properties of the checksum algorithm, however, MULTOS
implementations should aim to ensure that the checksum calculated has the full strength of a four byte
checksum (i.e. there should be a 1/2^32 probablity that the checksums calculated over two different
random blocks of data have the same value). The exact algorithm implemented by this primitive on a
particular platform may be specified in the MULTOS Implementation Report but otherwise application
developers cannot assume the results of this primitive will conform to any particular algorithm and should
assume that the result calculated on different platforms will be different.

The checksum is returned in Dynamic, where it overwrites the length and segment address of the
checksummed area.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 235

It is valid to calculate the checksum of a block of length zero.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set One, Number 0x89

Example

The following example performs a checksum over a block of the Static area. The Static area is declared as a
number of variables, however, the checksum is performed over all of the variables. Typically this may be
used to verify that data has been loaded into the variables correctly.
The correct value for the checksum is held in the bottom four byte of Public.

prmPlatOptCheckSum EQU 0x17

sName STATIC BYTE 10

sVariable2 STATIC BYTE 5

sVariable3 STATIC BYTE 5

 PUSHW 20

 LOADA sName

 PRIM prmPlatOptCheckSum

 CMPN PB[0000],4

 JNE InvalidCheckSum

ValidCheckSum

 EXIT

InvalidCheckSum

 EXIT

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

236 MULTOS is a registered trademark of MULTOS Limited.

Query0, Query1, Query2, Query3

These primitives check that a specific primitive from the sets 0 to 3 is available.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

There are four different primitive numbers assigned depending on which primitive set is being queried.
They are:

PRIM 0x00, primNo // Check Set 0 primitive

PRIM 0x01, primNo // Check Set 1 primitive

PRIM 0x02, primNo // Check Set 2 primitive

PRIM 0x03, primNo // Check Set 3 primitive

Arguments

The 1-byte parameter primNo is the number of the primitive whose existence is being checked.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters for these primitives.

Remarks

This group of primitives allows an application to query the availability of other primitives. Query0 is used to
query the existence of primitives in set zero, Query 1 in set one, and so on.

The set of a primitive is given in the Primitive and Set Number section of each primitive documented in this
document.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the desired primitive exists, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 237

Primitive Set and Number

Set One, numbers 0x00, 0x01, 0x02 and 0x03

Example

The following example tests for the implementation of the Query2 primitive.

prmQuery1 EQU 0x01

prmQuery2 EQU 0x02

 PRIM prmQuery1, prmQuery2

 JNE PrimNotSupported

 //Continue normal execution

 ...

PrimNotSupported

 EXIT

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

238 MULTOS is a registered trademark of MULTOS Limited.

Query Channel

This primitive allows a MULTOS application to determine whether a channel is supported by the platform.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x86

Arguments

None.

Stack Usage

Stack In ChannelID

Stack Out {empty}

The 1-byte parameter ChannelID indicates which non-MULTOS application channel should be queried.

Remarks

If the specified channel is supported then the Z flag is set, otherwise it is cleared.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z set if the channel number is supported by the platform, cleared otherwise.

Primitive set and number

Set zero, number 0x86

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 239

Query Codelet

This primitive queries the existence of a specific codelet on the MULTOS device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x84

Arguments

None.

Stack Usage

Stack In CodeletID

Stack Out CodeletID

The 2-byte parameter CodeletID gives the globally unique identification number of the codelet to be
queried.

Remarks

A codelet is code that has been included in ROM during the masking process. The code, which can be a
complete application or a library of functions, is available to all applications on the device. Support for any
particular codelet is at the discretion of the implementor. However, all codelets are registered with the
MULTOS Key Management Authority and each has a unique identifier.

The purpose of this primitive is to determine if a codelet with the indicated ID is available on the MULTOS
device. If the codelet with ID CodeletID is present in the device, the CCR Z flag is set.

The 2-byte value CodeletID remains on the stack after the primitive executes. This can be used by a
following ‘Call Codelet’ primitive.

Note that a codelet ID of 0 is valid and refers to the executing application. Given that the executing
application must exist, the codelet exists and the CCR Z flag is set accordingly. See the remarks section of
the primitive ‘Call Codelet’ for further information.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

240 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the Codelet ID was found, cleared otherwise.

Primitive Set and Number

Set Zero, Number 0x84

Example

The following example checks that a particular codelet exists and if so proceeds to call the codelet. Note
that the codelet ID used below is fictitious.

prmCallCodelet EQU 0x83

prmQueryCodelet EQU 0x84

CODELETID EQU 0xF1F2

 PUSHW CODELETID

 PRIM prmQueryCodelet

 // CCR Z flag cleared if does not exist

 BEQ warning_CodeletUnsupported

 // otherwise call the codelet from start

 // codelet ID remained on stack

 PUSHZ 2

 PRIM prmCallCodelet

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 241

Query Cryptographic Algorithm

This primitive allows a MULTOS application to determine whether a cryptographic algorithm is supported
by the implementation. The primitive cannot be used to determine any restrictions in the use of the
algorithm on any implementation.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x8A

Arguments

None.

Stack Usage

Stack In AlgorithmI
D

Stack Out {empty}

The 1-byte parameter AlgorithmID indicates which cryptographic algorithm should be queried.

AlgorithmID Algorithm

0x03 DES [FIPS46-3]

0x04 Triple DES [FIPS46-3]

0x05 SEED [KISA]

0x06 AES [FIPS197]

0x07 RSA

0x08 Comp-128

0x09 ECC

Remarks

If the specified algorithm is supported then the Z flag is set, otherwise it is cleared.

Condition Code

 C V N Z

- - - - - - - X

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

242 MULTOS is a registered trademark of MULTOS Limited.

C Unchanged
V Unchanged
N Unchanged
Z set if the algorithm is supported by the platform, cleared otherwise.

Primitive set and number

Set zero, number 0x8A

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 243

Query Interface Type

This primitive indicates the type of interface is being used to communicate to the device.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x0D

Arguments

None.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters for this primitive.

Remarks

The primitive allows an application to determine if the terminal is communicating to the device using a
contact or contactless interface. The CCR Z flag is updated depending on the result of the primitive
processing.

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the interface was contactless, cleared if contact

Primitive Set and Number

set zero, number 0x0D

Example

The following example exits indicating that a function is not supported if the interface type is contactless.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

244 MULTOS is a registered trademark of MULTOS Limited.

prmQueryInterface EQU 0x0D

 PRIM prmQueryInterface

 JNE err_FuncNotSupported

 // normal functioning if interface is contact

err_FuncNotSupported

 EXITSW 0x6A81

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 245

Read PIN

Returns the clear PIN which is either the local application PIN or the Global PIN depending on the
access_list bit settings in the ALC. See Initialise PIN for details.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE6

Arguments

None.

Stack Usage

Stack In OutAddr

Stack Out PinLength

OutAddr is a 2 byte address of a buffer to contain the returned PIN.
PinLength (1 byte) is the length of the PIN returned in OutAddr

Remarks

This primitive will abend if the ALC Permission is either Global/Basic or Global/Write or if the PIN has not
yet been initialised.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

set zero, number 0xE6

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

246 MULTOS is a registered trademark of MULTOS Limited.

Reject Process Event

The Reject Process Event primitive can be called by any application to request that the current application
process event is rejected by MULTOS. The application continues to execute normally, with MULTOS
processing the request when the application exits. The effect of calling this primitive depends upon the
event that is being rejected (see [MDG] for more information).

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE9

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

This primitive has no effect if the required access_list bit is not set.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0xE9

Reset Session Data

This primitive allows a shell application to reset the session data of all other applications on the MULTOS
device.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 247

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x81

Arguments

None.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters for this primitive.

Remarks

If the calling application is not executing as a shell, this primitive has no effect.

This primitive clears the session data of all other applications. The session data of the shell application is
unaffected.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0x81

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

248 MULTOS is a registered trademark of MULTOS Limited.

Reset WWT

This primitive sends a work wait time extension request to the terminal.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x02

Arguments

None.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters for this primitive.

Remarks

This primitive causes a message to be sent to the terminal to inform it that more time is required for
processing to complete. The nature of the message is protocol-dependent in accordance with [ISO7816-3].
Under T=0, for example, a NULL byte is sent while under T=1 an S-Block, Supervisor Wait Time Extension, is
sent.

Most MULTOS implementations send work wait extension requests automatically and the frequency of the
resets is implementation specific. This automatic functioning can be disabled using the Control Auto Reset
WWT Primitive.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 249

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0x02

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

250 MULTOS is a registered trademark of MULTOS Limited.

Return from Codelet

This primitive is used when a codelet based function finishes executing and returns control to the calling
application. It allows input to be removed from and output left on the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x80, BytesIn, BytesOut

Arguments

The 1-byte parameter BytesIn indicates the number of bytes to be removed from the stack upon returning
from the codelet. The 1-byte sized BytesOut parameter indicates the number of bytes to be left on the
stack as output from the codelet processing.

Stack Usage

Stack In [n]
Stack Out [m]

Both the input and out parameters n and m are variable in size. The size can range from 0 to 255 bytes. The
input parameter n is of size BytesIn and m is of size BytesOut.

The input and output can also consist of several variables of differing size, but this primitive does not
concern itself with the data structure, but rather the total length.

Remarks

This primitive is used to return control from a codelet to the application that invoked it. The two
arguments are used to discard parameters passed to the codelet and return result bytes in the same way
as the PRIMRET Return instruction operates.

This primitive is expecting linkage data to be on the stack. These bytes are automatically placed there by
the primitive ‘Call Codelet’.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 251

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

set two, number 0x80

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

252 MULTOS is a registered trademark of MULTOS Limited.

RSA Verify

This primitive performs a modular exponentiation operation, the basis of the RSA algorithm. This version
of the primitive is optimised for use with Public key operations only and platform countermeasures that
protect the RSA algorithm may be disabled. For Private key operations the Modular Exponentiation / RSA
Sign primitive should be used.

IT IS STRONGLY ADVISED THIS PRIMITIVE IS USED WITH PUBLIC KEYS ONLY.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack: eLen, mLen, eAddr, mAddr, inAddr, outAddr

PRIM 0xEB

Arguments

None.

Stack Usage

Stack In eLen mLen eAddr mAddr inAddr outAddr

Stack Out {empty}

All parameters are 2 bytes in size. The values eLen and mLen represent the length of the exponent and
modulus respectively. These lengths represent the size in bytes. The value eAddr is the location of the
exponent of size eLen, while mAddr is the location of the modulus of size mLen. The addresses inAddr and
outAddr are the location of the input to the modular exponentiation operation and the address to where
the output will be written.

Remarks

This primitive performs modular exponentiation operation and the result is written at the specified address
outAddr.

Moduli with length that is not a multiple of 8 bits are padded at the least significant end with bits 0. So, a
1023-bit modulus would have the least significant bit of the least significant byte set to 0.

The size of the input and output is considered to the same as that of the modulus. They are all mLen in size.

The primitive will function normally if inAddr and outAddr point to the same memory area. That is to say
the output can overwrite the input.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 253

In order to enable modular exponentiation to operate correctly there are a number of general conditions
that must be met:

• The modulus must be odd.

• The base value must be less than the modulus.

• The exponent must be less than the modulus.

• The length of the exponent must be less than or equal to the length of the modulus.

There are some implementation specifics that may impact on the usage of this primitive. For example, the
most significant byte of the modulus should not be zero although some platforms may permit it. As
another example, some implementations may only work on fixed key lengths. It may also be the case that
an implementation may provide optimised support for an exponent length of 1 with a value of 3 and from
MULTOS 4.2 one may also provide optimised support for an exponent length of 3 and a value of 65537. See
the MULTOS Implementation Report [MIR] for specific information.

Primitive set and number

Set zero, number 0xEB

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Example

The following example shows how to use the modular exponentiation primitive to encrypt input using the
private exponent. Here the 72-byte input value is found in public and the output overwrites it.

prmModularExponentiation EQU 0xEB

sD STATIC BYTE 64 // 64-byte private exponent

sN STATIC BYTE 72 // 72-byte modulus

 PUSHW 64 // exponent size

 PUSHW 72 // modulus size

 LOADA sD // exponent location

 LOADA sN // modulus location

 LOADA PB[0] // input location

 LOADA PB[0] // output location

 PRIM prmModularExponentiation

 EXITLA 72

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

254 MULTOS is a registered trademark of MULTOS Limited.

Secure Hash

This primitive calculates the SHA-1, SHA-224, SHA-256, SHA-384 or SHA-512 digest of a message of
arbitrary length in accordance with [FIPS180-3].

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xCF

Arguments

None.

Stack Usage

Stack In lenMsg lenHash addrHash addrMsg

Stack Out {empty}

Each of the input parameters is 2-bytes in size. The value lenMsg is the size in bytes of the input to the
Secure Hash algorithm. The value lenHash is either 20, 28, 32, 48 or 64 and is the size of the resultant hash
digest. The parameter addrHash is the location where the hash digest will be written. The parameter
addrMsg is the location of the input of size lenMsg.

Remarks

The primitive uses the appropriate Secure Hash algorithm according to the length of the hash digest
requested, i.e.

lenHash Algorithm used Algorithms supported (when
primitive is implemented)

MULTOS 4.2 MULTOS
4.3/4.4

20 SHA-1 Optional Supported

28 SHA-224 Optional Optional

32 SHA-256 Supported Supported

48 SHA-384 Optional Optional

64 SHA-512 Optional Optional

Unsupported values of lenHash will cause an abend.
The primitive functions properly even if lenMsg is zero.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 255

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0xCF

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

256 MULTOS is a registered trademark of MULTOS Limited.

Secure Hash IV

This primitive calculates the SHA-1, SHA-224, SHA-256, SHA-384 or SHA-512 digest of a message of
arbitrary length in accordance with [FIPS180-3] with the ability to pass a previously calculated intermediate
hash value and message remainder (where the previous message was not block-aligned) to the algorithm.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE4

Arguments

None.

Stack Usage

Stack In lenMsg lenHash addrHash addrMsg addrInter
mediate
Hash

addrPrev
HashedB
ytes

lenMessag
eRemaind
er

addrMessa
geRemain
der

Stack Out lenMessageRema
inder

addrMessageRema
inder

Each of the input parameters is 2-bytes in size.
The value lenMsg is the size in bytes of the input to the Secure Hash algorithm.
The value lenHash is either 20, 28, 32, 48 or 64 and is the size of the resultant hash digest.
The parameter addrHash is the location where the hash digest will be written.
The parameter addrMsg is the location of the input message of size lenMsg.
The parameter addrIntermediateHash is the location of the previously calculated intermediate hash value
input to the algorithm and output from the algorithm. It is 20, 32 or 64 bytes in length dependent upon
the algorithm requested.
The parameter addrPrevHashedBytes is the location of the 4 byte (32-bit) counter indicating the number of
bytes previously input to the hashing algorithm, including previous calculations.
The parameter lenMessageRemainder is the number remaining non-block aligned bytes from a previously
hashed message.
The parameter addrMessageRemainder is the address of the remaining non-block aligned bytes of a
previously hashed message, of length lenMessageRemainder.

Remarks

The primitive uses the appropriate Secure Hash algorithm according to the length of the hash digest
requested, i.e. The length of the intermediate hash value passed to the algorithm and maximum length of
the message remainder (if present) depends upon the algorithm to be used.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 257

lenHash Length of

intermediate
hash value (in

bytes)

Maximum length
of message

remainder (in
bytes)

Algorithm
used

Algorithms supported (when
primitive is implemented)

MULTOS 4.2 MULTOS
4.3/4.4

20 20 32 SHA-1 Optional Supported

28 32 32 SHA-224 Optional Optional

32 32 32 SHA-256 Supported Supported

48 64 64 SHA-384 Optional Optional

64 64 64 SHA-512 Optional Optional

Unsupported values of lenHash will cause an abend.

The primitive functions properly even if lenMsg is zero.

If the value at addrIntermediateHash is all zeros, then the algorithm shall replace this value with the
standard IV value used by the algorithm, as specified in [FIPS180-3].

The 32-bit value at addrPrevHashedBytes is the number of bytes previously hashed by a call to this
primitive or an alternative calculation method. If the value at this address is zero, the primitive will start a
new hash calculation and ignore the values contained at addrIntermediateHash and
addrMessageRemainder. This value is updated by the primitive and may serve as input to a subsequent
call to the primitive.

If lenMessageRemainder is zero, the value at addrMessageRemainder will be ignored, but value at
addrIntermediateHash will still be used as the input value to the algorithm.

Following calculation, the memory at location addrIntermediateHash shall contain the last intermediate
hash value H(n) calculated by the algorithm prior to any truncation when performing a SHA-224 or SHA-
384 algorithm. This value may serve as input to a subsequent call to the primitive. The memory at
addrHash will always contain a final hash value complete with truncation if applicable.

If the message hashed (the value at addrMessageRemainder prepended to the value at addrMsg) is not
block aligned (i.e. not a multiple of either 32 or 64 bytes depending upon the hash algorithm), following
calculation of the intermediate value, the remainder of the message of length lenMessageRemainder shall
be pointed to by addrMessageRemainder and will be placed on the returned stack. This memory address
may be within the area starting at addrMsg for length lenMsg or it may be at the address passed to the
primitive.

Developers should ensure that there is sufficient memory at address addrMessageRemainder to contain
the message remainder of the appropriate block size, as the returned message remainder can be longer
than the input message remainder. If a developer does not allocate such a memory area, then the
primitive may overwrite memory beyond addrMessageRemainder + lenMessageRemainder or abend.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

258 MULTOS is a registered trademark of MULTOS Limited.

N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0xE4

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 259

SEED ECB Decipher

This primitive performs SEED ECB Decipher on a sixteen byte block of memory using a sixteen byte key.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xCD

Stack Usage

Stack In KeyAddr OutputAddr InputAddr

Stack Out {empty}

Each input parameter is 2 bytes in size. The value KeyAddr is the location of the key used in the SEED
algorithm, InputAddr is the location of the data block that serves as input to the decipher operation and
OutputAddr is the location where the output should be written.

Remarks

SEED is a 128-bit symmetric key block cipher that had been developed by KISA , the Korea Information
Security Agency.

This primitive recovers 16-byte plaintext from a SEED ECB ciphertext.

The result may overwrite the input; i.e., OutputAddr and InputAddr may point to the same location.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, number 0xCD

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

260 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example declares 48 bytes of static memory to hold the SEED Key, the plaintext block and
the ciphertext block. The address for each of these is loaded onto the stack and the SEED ECB Decipher
primitive called.

prmSEEDECBDecipher EQU 0xCD

sSEEDKey STATIC BYTE 16 =

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F

sPlaintext STATIC BYTE 16

sCiphertext STATIC BYTE 16

 LOADA sSEEDKey

 LOADA sPlaintext

 LOADA sCiphertext

 PRIM prmSEEDECBDecipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 261

SEED ECB Encipher

This primitive performs SEED ECB Encipher on a sixteen byte block of memory using a sixteen byte key.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xCE

Stack Usage

Stack In KeyAddr OuputAddr InputAddr

Stack Out {empty}

Each input parameter is 2 bytes in size. The value KeyAddr is the location of the key used in the SEED
algorithm, InputAddr is the location of the data block that serves as input to the encipher operation and
OutputAddr is the location where the output should be written.

Remarks

SEED is a 128-bit symmetric key block cipher that had been developed by KISA , the Korea Information
Security Agency.

This primitive generates a SEED ECB ciphertext output from an 16-byte plaintext input.

The result may overwrite the input; i.e., OutputAddr and InputAddr may point to the same location.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, number 0xCE

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

262 MULTOS is a registered trademark of MULTOS Limited.

Example

The following example declares 48 bytes of static memory to hold the SEED Key, the plaintext block and
the ciphertext block. The address for each of these is loaded onto the stack and the SEED ECB Encipher
primitive called.

prmSEEDECBEcnipher EQU 0xCE

sSEEDKey STATIC BYTE 16 =

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F

sPlaintext STATIC BYTE 16

sCiphertext STATIC BYTE 16

 LOADA sSEEDKey

 LOADA sCiphertext

 LOADA sPlaintext

 PRIM prmSEEDECBEncipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 263

Set AFI

This primitive sets the value of the Application Family Indicator for the current application.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

 * * * *

*This primitive is mandatory if the device supports ISO/IEC 14443 Type B contactless communication.

Syntax

// Stack holds AFI value

PRIM 0x12

Arguments

None.

Stack Usage

Stack In AFIvalue

Stack Out {empty}

The input parameter AFIvalue is 1-byte in size and holds the value to which the AFI will be set.

Remarks

The AFI may be specified by a contactless ISO/IEC 14443 Type B terminal during anti-collision processing. If
a device contains an application that has the same AFI, then the device will respond otherwise the device
will not respond.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set Zero, Number 0x12

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

264 MULTOS is a registered trademark of MULTOS Limited.

Set ATR File Record

This primitive writes a record into the ATR File record.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds ATRAddr parameter

PRIM 0x07

Arguments

None.

Stack Usage

Stack In ATRAddr

Stack Out Length

The 2-byte ATRAddr is the address of the record that will be written to the ATR File. The output parameters
Length is 1-byte in size and indicates the actual number of bytes written.

Remarks

The ATR file is an elementary file held in the root directory of the MULTOS device. Inside the file is one
record per application loaded onto the MULTOS device. An application may write data to its own record
using this primitive, but cannot effect the records of other applications.
Note that the ATR File does not get returned by the MULTOS device as part of the Answer To Reset

The ATR file record pointed to by ATRAddr must be formatted with the first byte giving the number of
bytes in the record followed by the record itself. For example.

0x05,0x01,0x02,0x03,0x04,0x05

The ATR file data is copied from the byte after the segment address specified by the application.

The ATR record should not occupy the top byte of the stack.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 265

Condition Code

 C V N Z

- - - - X - - X

C Set if the amount of data written is less than requested
V Unchanged
N Unchanged
Z Set if no data is written, cleared otherwise

Primitive Set and Number

Set Zero, Number 0x07

Example

The following example sets the ATR File record corresponding to the application to ten bytes that are held
in the variable sATR.

prmSetATRFileRecord EQU 0x07

sATR STATIC BYTE 7 = 0x06,0x01,0x02, 0x03, 0x04, 0x05, 0x06

 LOADA sATR

 PRIM prmSetATRFileRecord

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

266 MULTOS is a registered trademark of MULTOS Limited.

Set ATR Historical Characters

This primitive writes data to the historical characters an ATR.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds HistAddr parameter

PRIM 0x08

Arguments

None.

Stack Usage

Stack In HistAddr

Stack Out Length

The 2-byte input parameter HistAddr is the address from which to copy those bytes that will be written to
the historical characters of the ATR. The 1-byte output parameter Length indicates the total number of
bytes actually written.

Remarks

The ATR Historical Characters at HistAddr must be formatted with the first byte giving the number of bytes
in the record followed by the record itself. For example, if the value to be written was 0x01, 0x02, 0x03,
0x04, 0x05, then the value should be

0x05,0x01,0x02,0x03,0x04,0x05

A write of zero is acceptable and will erase any historical characters present in the ATR. The maximum
write size is 15 bytes.

As of MULTOS 4 there is a primary and secondary ATR values. The first is returned on a cold reset and the
second on a warm reset. An application may request permission to write to the historical characters of one
of those ATR. An application can not request control of both ATR historical characters nor can multiple
applications control them. The request for control is contained in the application load certificate used.

If an application attempts to write to the historical characters of an ATR controlled by another application,
the write request will not be honoured and the CCR Z flag will be set.

.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 267

Condition Code

 C V N Z

- - - - X - - X

C Set if the amount of data written is less than requested
V Unchanged
N Unchanged
Z Set if no data is written, cleared otherwise

Primitive Set and Number

Set Zero, Number 0x08

Example

The following example sets the ATR Historical Characters to the application to eight bytes that are held in
the variable sATR.

prmSetATRHistoricalCharacters EQU 0x08

sHistATR STATIC BYTE 9 = 0x08, 0x01, 0x02, 0x03, 0x04, 0x05,

0x06, 0x07, 0x08

 LOADA sHistATR

 PRIM prmSetATRHistoricalCharacters

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

268 MULTOS is a registered trademark of MULTOS Limited.

Set ATS Historical Characters

This primitive writes data to the Historical Characters of the MULTOS device’s ATS for ISO/IEC 14443 Type
A contactless operation.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

 * * * *

*This primitive is mandatory if the device supports ISO/IEC 14443 Type A contactless communication.

Syntax

// Stack holds HistAddr parameter

PRIM 0x0E

Arguments

None.

Stack Usage

Stack In HistAddr

Stack Out Length

The 2-byte input parameter HistAddr is the address from which to copy those bytes that will be written to
the historical characters of the ATR. The 1-byte output parameter Length indicates the total number of
bytes actually written.

Remarks

The ATS Historical Characters at HistAddr must be formatted with the first byte giving the number of bytes
in the record followed by the record itself. For example, if the value to be written was 0x01, 0x02, 0x03,
0x04, 0x05, then the value should be

0x05,0x01,0x02,0x03,0x04,0x05

A write of zero is acceptable and will erase any historical characters present in the ATS. The maximum
write size is implementation specific. The ATS historical characters should not occupy the top byte of the
stack.

Permission to update the ATS historical characters is requested in the application load certificate. Only one
application can control them. If an application attempts to write to the historical characters of an ATS
controlled by another application, the write request will not be honoured and the CCR Z flag will be set.

If the an application on a device that is configured to work over a contact interface only, then the CCR C
flag is cleared and the CCR Z flag is set.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 269

Condition Code

 C V N Z

- - - - X - - X

C Set if the amount of data written is less than requested
V Unchanged
N Unchanged
Z Set if no data is written, cleared otherwise

Primitive Set and Number

Set Zero, Number 0x0E

Example

The following example sets the ATS Historical Characters for the application to the ten bytes that are held
in the variable sHistATS.

prmSetATSHistoricalCharacters EQU 0x0E

sHistATS STATIC BYTE 11 = 0x0A,1,2,3,4,5,6,7,8,9,A

 LOADA sHistATS

 PRIM prmSetATSHistoricalCharacters

 // Check CCR for result

 // CCR.C set if bytes copied < bytes requested

 // CCR.Z set if no bytes copied.

 JLE err_incompletecopy

 // error handling code would be found after the label

An alternative method of checking how much data was written is to compare the length byte left on the
stack with the expected length. The following example shows this.

sHistATS STATIC BYTE 11 = 0x0A,1,2,3,4,5,6,7,8,9,A

 LOADA sHistATS

 PRIM prmSetATSHistoricalCharacters

 // primitive leaves one byte length value on stack

 // to check: load static length byte to stack

 // and compare to length byte on stack

 LOAD sHistATS, 1

 CMPN , 1

 JNE err_incompletecopy

 // error handling code would be found after the label

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

270 MULTOS is a registered trademark of MULTOS Limited.

Set FCI File Record

This primitive writes to the File Control Information (FCI) associated with the calling application.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds address of record

PRIM 0x11

Arguments

None.

Stack Usage

Stack In FCIAddr

Stack Out Length

The 2-byte input parameter FCIAddr is the location of the data to be written to the FCI. The data at
FCIaddr must be formatted with the first byte indicating the length of the record in bytes, followed by the
record itself. The 1-byte output parameter Length indicates the actual number of bytes written.

Remarks

This primitive allows an application to change the file control information available in a response to a
SELECT FILE command when the application is selected.

The FCI record should not occupy the top byte of the stack.

No more than the specified number of bytes is written. The actual number written is returned on the stack.
Note that the length of the FCI record is limited to the length given by the ALC.

Condition Code

 C V N Z

- - - - X - - X

C Set if the amount of data written is less than requested
V Unchanged
N Unchanged
Z Set if no data is written, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 271

Primitive Set and Number

Set zero, number 0x11

Example

The following example sets the FCI File record corresponding to the application to ten bytes that are held
in the variable sFCI.

prmSetFCIFileRecord EQU 0x11

sFCI STATIC BYTE 11 = 0x0A, 1,2,3,4,5,6,7,8,9,A

 LOADA sFCI

 PRIM prmSetFCIFileRecord

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

272 MULTOS is a registered trademark of MULTOS Limited.

Set PIN Data

Sets data relating to the PIN which is either the local application PIN or the Global PIN depending on the
access_list bit settings in the ALC. See Initialise PIN for details.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x85, ElementId

Arguments

ElementId can take the following values:

0x00: Set the PIN Try Counter
0x01: Set the PIN Try Limit
0x03: PIN Verification Status (new in MULTOS 4.5.2)

Stack Usage

Stack In Value

Stack Out {empty}

Value is the one byte value to set. PIN verification Status must be given the values

• 0x5A = PIN is unverified

• 0xA5 = PIN is verified

Remarks

This primitive will abend if the PIN has not yet been initialised.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0x85

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 273

Set Silent Mode

This primitive switches the MULTOS device into or out of silent mode. Silent mode ensures that no device
unique information is returned by MULTOS’ card edge API. The “suspend” option switches off Silent mode
temporarily until the next reset, when it will be reinstated.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE3, Mode

Arguments

The 1 byte argument Mode is used to specify whether Silent Mode should be turned on or off or
suspended as follows.

• Mode = 0: Turn off silent mode completely.

• Mode = 1: Turn silent mode on permanently on all interfaces.
--- The following options are now available in MULTOS 4.3.1 --

• Mode = 2: Turn permanent silent mode on for contact and off for contactless

• Mode = 3: Turn permanent silent mode on for contactless and off for contact

• Mode = 4: Temporarily turn silent mode off

• Mode = 5: Turn silent mode back on after temporary disablement

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

Silent mode only affects information returned directly from MULTOS via the card edge API in GET
CONFIGURATION DATA, GET MANUFACTURER DATA, GET MULTOS DATA and OPEN MEL commands. It
does not affect the information returned by MULTOS to applications using primitives.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

274 MULTOS is a registered trademark of MULTOS Limited.

V Unchanged
N Unchanged
Z Unchanged.

Primitive set and number

Set one, number 0xE3

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 275

Set Transaction Protection

This primitive permits a series of writes to be treated as a single entity, which is then written or discarded
in its entirety.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x80, Options

Arguments

The 1-byte argument Options is used to turn transaction protection on and off as well as indicating if the
writes should be committed or discarded. See the Remarks section for the bit flag settings.

Stack Usage

Stack In {empty}
Stack Out {empty}

Remarks

The value of the Options argument is a bitmap as follows.

7 6 5 4 3 2 1 0 Comments
0 0 0 0 0 0 - - Any other values are undefined
- - - - - - 0 - Transaction protection off
- - - - - - 1 - Transaction protection on
- - - - - - - 0 Discard changes
- - - - - - - 1 Commit changes

The bit 0 flag is only interrogated if transaction protection has been switched on in a previous call to the
primitive. The bit 1 flag is always interrogated and sets transaction protection on or off.

Transaction protection is a mechanism that allows an application to commit several writes to non-volatile
memory in an atomic fashion. When transaction protection is off, the default setting, each write is applied
as the instruction is executed. However, when transaction protection is on writes to non-volatile memory
are not applied immediately as is normally the case. They are only applied when the application explicitly
commits the writes. If the application exits, delegates, or abnormally ends, then all uncommitted writes are
discarded.

Uncommitted writes are not visible to the application.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

276 MULTOS is a registered trademark of MULTOS Limited.

Transaction protection applies to writes to Static and writes performed to system memory by any relevant
primitive. It does not affect writes to Public and Dynamic, nor does it affect any writes that MULTOS may
need to perform in order to support the cryptographic primitives or the Get Random Number primitive.

There may also be a limitation on the number of transactions which may be held pending at any one point
in time. Again, this is dependent upon the memory availability within the platform.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0x80

Examples

The following example shows two similar code snippets. The first does not make use of transaction
protection, the second does.

prmTransactionProtection EQU 0x80

TPOn EQU 2

TPOffandCommit EQU 1

TPOffandDiscard EQU 0

 // Transaction protection off

 SETB SB[0], 3

 ADDB SB[0], 1

 ADDB SB[0], 1

 // result at SB[0] now 5

 SETB SB[0], 3

 PRIM prmTransactionProtection, TPOn

 ADDB SB[0], 1

 ADDB SB[0], 1

 PRIM prmTransactionProtection, TPOffandCommit

 // result at SB[0] now 4 as uncommitted writes

 // are not available to an application

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 277

Set Contactless Select SW

This primitive sets the value of the status word returned by MULTOS in the future when the application is
selected on the contactless interface.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x06, SW1, SW2

Arguments

There are two 1-byte sized arguments. The value SW1 is the most significant byte of the status word and
SW2 is the least significant byte.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters.

Remarks

When an application is successfully selected MULTOS returns a status word of 90 00. This primitive allows
an application to set a different status word value to return on the contactless interface. It can only be
reset by another call to this Primitive.

The existing SetSelectSW functionality remains unchanged and sets the SW1SW2 for both the contact and
contactless response. If the application then wishes to distinguish between the two interfaces then it must
call the new primitive to update the contactless select SW1SW2.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

278 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set Two, Number 0x06

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 279

Set Select SW

This primitive sets the value of the status word returned by MULTOS when the application is selected in
the future.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x04, SW1, SW2

Arguments

There are two 1-byte sized arguments. The value SW1 is the most significant byte of the status word and
SW2 is the least significant byte.

Stack Usage

Stack In {empty}
Stack Out {empty}

There are no input or output parameters.

Remarks

When an application is successfully selected MULTOS returns a status word of 90 00. This primitive allows
an application to set a different status word value to return. Note that MULTOS will still route commands
to the selected application, regardless of the SW set using this primitive.

The application’s Select SW will be retained after the MULTOS device is powered-off and can only be reset
by another call to this Primitive.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

280 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set Two, Number 0x04

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 281

SHA-1

This primitive calculates the SHA-1 hash digest of a message of arbitrary length.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xCA

Arguments

None.

Stack Usage

Stack In lenMsg addrHash addrMsg

Stack Out {empty}

Each of the input parameters is 2-bytes in size. The value lenMsg is the size of the input to the SHA-1
algorithm. The second parameter addrHash is the location where the 20-byte hash digest will be written.
The parameter addrMsg is the location of the input of size lenMsg.

Remarks

The primitive functions properly even if lenMsg is zero.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive set and number

Set zero, number 0xCA

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

282 MULTOS is a registered trademark of MULTOS Limited.

Shift Left

This primitive performs a bitwise shift left on a block of bytes.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds BytesIn parameter

PRIM 0x02, Length, ShiftBits

Arguments

Both arguments are 1-byte in size. Length gives the size of the data block to be shifted and ShiftBits
indicates the number of bits to shift.

Stack Usage

Stack In BytesIn

Stack Out BytesOut

The input parameter BytesIn is of size Length and is the byte block to be shifted. The output parameter
BytesOut is the byte block of size Length that holds the result of ShiftBits shift operations on BytesIn.

Remarks

This primitive bit-shifts data leftwards, filling the least significant bits with zeroes.

The effect of the primitive is undefined if any of the following is true:

• ShiftBits is zero

• Length is zero

• ShiftBits >= 8 * Length

Condition Code

 C V N Z

- - - - X - - X

C Set if the last bit shifted out is a one, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 283

Primitive Set and Number

Set two, number 0x02

Example

The following example pushes a word onto the stack and shows how the word is affected by successive
calls to the Shift Left primitive.

prmShiftLeft EQU 0x02

 PUSHW 0x0001

 PRIM prmShiftLeft,2,4 //Stack=0x0010

 PRIM prmShiftLeft,2,4 //Stack=0x0100

 PRIM prmShiftLeft,2,4 //Stack=0x1000

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

284 MULTOS is a registered trademark of MULTOS Limited.

Shift Right

This primitive performs a bitwise shift right on a block of bytes.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

// Stack holds ByteIn parameter

PRIM 0x03, Length, ShiftBits

Arguments

Both arguments are 1-byte in size. Length gives the size of the data block to be shifted and ShiftBits
indicates the number of bits to shift.

Stack Usage

Stack In BytesIn

Stack Out BytesOut

The input parameter BytesIn is of size Length and is the byte block to be shifted. The output parameter
BytesOut is the byte block of size Length that holds the result of ShiftBits shift operations on BytesIn.

Remarks

This primitive bit-shifts data rightwards, filling the most-significant bits with zeroes.

The effect of the primitive is undefined if any of the following is true:

• ShiftBits is zero

• Length is zero

• ShiftBits >=8 * Length

Condition Code

 C V N Z

- - - - X - - X

C Set if the last bit shifted out is a one, cleared otherwise
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 285

Primitive Set and Number

Set two, number 0x03

Example

The following example pushes a word onto the stack and shows how the word is affected by successive
calls to the Shift Right primitive.

prmShiftRight EQU 0x03

 PUSHW 0x1000 //Stack=0x1000

 PRIM prmShiftRight,2,4 //Stack=0x0100

 PRIM prmShiftRight,2,4 //Stack=0x0010

 PRIM prmShiftRight,2,4 //Stack=0x0001

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

286 MULTOS is a registered trademark of MULTOS Limited.

Shift Rotate

This primitive provides an efficient way of shifting and rotating a block of data by a variable number of bits.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x07, Mode, Direction

Arguments

Both arguments are 1-byte in size. Mode defines the function (0x01 = Shift, 0x02 = Rotate) and Direction
defines the sense of the function (0x01 = Left, 0x02 = Right).

Stack Usage

Stack In NumBits DataLen DataAddr

Stack Out {empty}

All parameters are 2 bytes long. NumBits is the number of bits to shift / rotate by. DataLen is the length of
the data (in bytes) of the data pointed to by DataAddr that is to be shifted / rotated.

Remarks

When shifting, vacated bits are filled with zero.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set two, number 0x07

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 287

Store CCR

The byte at the top of the stack is moved to the Condition Code Register.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x06

Arguments

None.

Stack Usage

Stack In setCCR

Stack Out {empty}

The 1-byte input parameter setCCR is the value that will be stored in the condition control register byte.

Remarks

This primitive moves one byte from the stack to the CCR.

Condition Code

The bit flag values will be those specified by the value on the stack.

 C V N Z

- - - - X X X X

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

288 MULTOS is a registered trademark of MULTOS Limited.

Primitive Set and Number

Set zero, number 0x06

Example

The following example sets the Condition Code Register to 00001001b by pushing 0x09 to the stack and
then calling the primitive to move that value. This will now set the CCR C and the CCR Z bit flags. The
branch instruction BLE will fire resulting in the code pointer moving to the address of LessThan label.

prmStoreCCR EQU 0x06

 PUSHB 0x09

 PRIM prmStoreCCR

 BLE LessThan

 // This line will not be executed

 LessThan

 // Example code jumps here.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 289

Subtract BCDN

This primitive subtracts two stack resident unsigned byte blocks of the same size, where the blocks hold
binary coded decimal (BCD) values. The result is placed on the stack.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

//Stack holds Operand1, Operand2 bytes

PRIM 0x12, length

Arguments

The argument length gives the size of the byte blocks to be added.

Stack Usage

Stack In Operand1 Operand2

Stack Out Output

The parameters Operand1 and Operand2 are both of size length and these are the values that will be
added. The parameter Output is of size length and holds the result of the addition.

Remarks

The length value is specified using a single byte. Therefore, the maximum length of a block is 255 bytes

The value designated by an operand should be in BCD format. If not in BCD format, the processing in
MULTOS device will abnormally end the application.

The CCR C flag is set if the result of the operation is greater than that which can be held in length bytes.
The Z flag is set if the result is zero.

The operation performed is Output = Operand1 – Operand2

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

290 MULTOS is a registered trademark of MULTOS Limited.

Condition Code

 C V N Z

- - - - X - - X

C Set if a carry occurs, cleared otherwise.
V Unchanged
N Unchanged
Z Set if the result is zero, cleared otherwise.

Primitive Set and Number

Set one, number 0x12

Examples

The following examples illustrate how to use the primitive as well as the CCR settings.

prmSubtractBCDN EQU 0x12

 PUSHB 0

 PUSHB 1

 PRIM prmSubtractBCDN, 1

 // result on stack is 99 CCR C set and CCR Z cleared

 PUSHW 0x0150

 PUSHW 0x0100

 PRIM prmSubtractBCDN, 2

 // result on stack 0x0100 CCR C and CCR Z both cleared

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 291

Triple DES Decipher

This primitive performs a Triple DES Decipher on an eight byte block of memory in accordance with
[FIPS46-3].

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD8

Arguments

None.

Stack Usage

Stack In KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

The 2 byte parameter KeyAddr is the starting address of the Triple DES keys to be used.
The 1 byte parameter KeyLen is the length in bytes of the Triple DES keys at address KeyAddr.
The 2 byte parameter OutputAddr is the starting address of the resultant 8-bytes of plaintext.
The 2 byte parameter InputAddr is the starting address of the 8-bytes of ciphertext.

Remarks

This primitive performs the Triple DES decipher operation on an 8-byte block of memory. The Triple DES
keys K1 , K2 and optional K3 are held in an 16 or 24 byte block. If KeyLen is 16 then K3 shall equal K1.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input.

This primitive is only available to an application if “Strong Cryptography” is set on in the application’s
access_list when loaded.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

292 MULTOS is a registered trademark of MULTOS Limited.

Z Unchanged

Primitive Set and Number

Set zero, number 0xD8

Example

The following example declares 16 bytes of static memory to hold the two Keys (128-bits), the ciphertext is
held as session data, while the resulting plaintext will be written to public. The address for each of these is
loaded onto the stack and the Triple DES Decipher primitive is called.

prm3DESDecipher EQU 0xD8

KEYLEN EQU 16

sKey STATIC BYTE 16 =

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D

,0x0E,0x0F,0x10

dCiphertext DYNAMIC BYTE 16

pPlaintext PUBLIC BYTE 16

 LOADA sKey

 PUSHB KEYLEN

 LOADA pPlaintext

 LOADA dCiphertext

 PRIM prm3DESDecipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 293

Triple DES Encipher

This primitive performs Triple DES Encipher on an eight byte block of memory in accordance with [FIPS46-
3].

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xD9

Arguments

None.

Stack Usage

Stack In KeyAddr KeyLen OutputAddr InputAddr

Stack Out {empty}

The 2 byte parameter KeyAddr is the starting address of the Triple DES keys to be used.
The 1 byte parameter KeyLen is the length in bytes of the Triple DES keys at address KeyAddr.
The 2 byte parameter OutputAddr is the starting address of the resultant 8-bytes of ciphertext.
The 2 byte parameter InputAddr is the starting address of the 8-bytes of plaintext.

Remarks

This primitive performs the Triple DES encipher operation on an 8-byte block of memory. The Triple DES
keys K1 , K2 and optional K3 are held in a 16 or 24 byte block. If KeyLen is 16 then K3 shall equal K1.

The output is written at the specified segment address and this may be the same as the address of the
input; i.e., the output overwrites the input.

This primitive is only available to an application if “Strong Cryptography” is set on in the application’s
access_list when loaded.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

294 MULTOS is a registered trademark of MULTOS Limited.

Z Unchanged

Primitive Set and Number

Set zero, number 0xD9

Example

The following example declares 24 bytes of static memory to hold the three Keys (192-bits), the plaintext is
held as session data, while the resulting ciphertext will be written to public. The address for each of these
is loaded onto the stack and the Triple DES Encipher primitive is called.

prm3DESEncipher EQU 0xD9

KEYLEN EQU 24

sKey STATIC BYTE 24 =

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D

,0x0E,0x0F,0x10, 0x11, 0x12, 0x13, 0x14, 0x15, x016, 0x17, 0x18

dPlaintext DYNAMIC BYTE 16

pCiphertext PUBLIC BYTE 16

 LOADA sKey

 PUSHB KEYLEN

 LOADA pPlaintext

 LOADA dCiphertext

 PRIM prm3DESEncipher

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 295

Unpad

This primitive identifies an un-padded message from a padded message.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x16, PadScheme

Arguments

The 1-byte parameter PadScheme specifies the unpadding scheme, as follows.

• 0x01 and 0x02: Zero or more bytes of 0x00 are searched from the end of the message until an 0x80
is encountered or there are no more bytes to search. The length of the resultant unpadded
message is then returned.

Stack Usage

Stack In LenMsg AddrMsg

Stack Out LenMsgUnPadded

- The 2-byte parameter LenMsg specifies the length in bytes of the padded message.

- The 2-byte parameter AddrMsg specifies the segment address of the padded message.

- The 2-byte result LenMsgUnpadded is the length in bytes of the unpadded message.

Remarks

The padded block is not modified in any way. The result lenMsgUnpadded contains the length of the
unpadded message within the padded message and the calling application is responsible for manipulating
the unpadded part of the message as required.

If no 0x80 byte is encountered within the padded message, then lenMsgUnpadded is zero.

The primitive abends, if an invalid PadScheme value is supplied.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

296 MULTOS is a registered trademark of MULTOS Limited.

N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x16

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 297

Update Process Events

This primitive enables or disables individual events for an application according to the mask provided.

Availability

MULTOS

4

MULTOS

4.2

MULTOS

4.3.x

MULTOS

4.4

MULTOS

4.5.1 / 2 / 3

MULTOS 4.5.x

Syntax

PRIM 0x18

Arguments

None.

Stack Usage

Stack In Mask

Stack Out {empty}

Mask specifies a two byte bitmap as follows (bit15 is the leftmost, most significant bit)

• bit0 = APDU event mask.

• bit1 = SELECT event mask.

• bit2 = Automatic SELECT event mask.

• bit3 = RESELECT event mask.

• bit4 = DESELECT event mask.

• bit5 = CREATE event.

• bit6 = DELETE event.

• bit7 – bit15: RFU

Remarks

Condition Code

 C V N Z
- - - - - - - -

C Unchanged.
V Unchanged
N Unchanged
Z Unchanged.

Primitive set and number
Set zero, number 0x18

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

298 MULTOS is a registered trademark of MULTOS Limited.

Update Session Size

This primitive temporarily updates the total size of the application’s session memory.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.x MULTOS 4.4 MULTOS 4.5.1 MULTOS 4.5.x

Syntax

PRIM 0x04

Arguments

 None.

Stack Usage

Stack In SessionSize

Stack Out Result

SessionSize specifies the total size of session data in bytes. SessionSize is a 2-byte value.

Result holds the result of the operation as follows:

• 0 = update failed as either SessionSize is either more than the session size held in the application’s ALC
or there is insufficient free RAM to accommodate the increase in the size of the application’s session.

• 1 = update succeeded.

Remarks

1. As of MULTOS 4.5.3 the check against the ALC size is optional.
2. After calling this primitive, function call returns are not possible.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set zero, number 0x04

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 299

Update Static Size

This primitive updates the total size of the application’s Static memory allowing you to free up space no
longer required or allocate more space if needed.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0x04, Options

Arguments

The 1 byte argument Options is used to specify the size of the stack parameter StaticSize.

Options = 0: 32-bit (4-byte) StaticSize.
Options = 1: 64-bit (8-byte) StaticSize.

Stack Usage

Stack In StaticSize

Stack Out Result

StaticSize specifies the total size of Static in bytes. StaticSize can either be a 32-bit (4-byte) or a 64-bit (8-byte)
value depending upon the value of Options.

Result holds the result of the operation as follows:

• 0 = update failed as either StaticSize is either more than the Static size specified in the application’s ALC
or there is insufficient free NVM to accommodate the increase in the size of the application’s Static.

• 1 = update succeeded

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

Set one, number 0x04

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

300 MULTOS is a registered trademark of MULTOS Limited.

Verify Asymmetric and Retrieve General

This primitive verifies an asymmetric signature of a message of arbitrary length.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE2, Mode

Arguments

The argument Mode indicates whether a protected or unprotected variant of RSA is to be used. Defined
values for Mode are 0x01 for standard mode with a public exponent of 3 and 0x81 for standard mode with
a public exponent of 3 using an “unprotected” variant. The effect of any other value is undefined.

Stack Usage

Stack In

MsgLen ModLen ModAddr InAddr CertType HashLen HashAddr

Stack Out {empty}

All the parameters except CertType are 2 bytes in size. The value MsgLen is either the size in bytes of the
data that has been signed and the signature or the length of data to recover, while ModLen is the length in
bytes of the public key modulus value to use in order to verify the signature. ModAddr and InAddr are the
locations of the public key modulus and message respectively. The 1-byte parameter CertType indicates
whether the signature to verify is in MULTOS 3 or MULTOS 4 format. The parameter HashLen indicates the
size in bytes of the modulus value used in calculating the asymmetric hash digest value. Finally HashAddr is
the location of the hash modulus of size HashLen.

Remarks

The CertType can take a value of 0x03 indicating a MULTOS 3 certificate format or 0x04 indicating a
MULTOS 4 certificate format. Any other value is undefined. A MULTOS 4 signature block consists of:

• 16-byte asymmetric hash digest

• n-byte data

• 8-byte random padding

• 8-byte fixed padding

The value n is found by subtracting 32 from the modulus length.

A MULTOS 3 signature block consists of:

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 301

• 16-byte asymmetric hash digest

• n-byte data

Here the value n is found by subtracting 16 from the modulus length.

When MsgLen is less than or equal to ModLen, MsgLen is interpreted to be the length of data to recover
from the signature component. The signature component is found at InAddr and is considered to be of size
ModLen. The data recovered of size MsgLen is returned starting at the least significant end of decrypted
signature block.

When MsgLen is greater than ModLen, the value at InAddr is considered to consist of a plaintext header
and signature, where the signature is of size ModLen. The data recovered will include the plaintext
followed by the recovered data. Note that the data will not include the asymmetric hash digest value.

RSA is the only supported signature verification algorithm. The public exponent is always considered to
have a value of 3.

The recovered message will overwrite the input message.

The unprotected variant has some restrictions. They are:

• The public key modulus must be in static memory. If it is not, the results can not be guaranteed and
may result in an abnormal end to application execution.

• The message must be either in static memory or in public memory. If it is not, the results can not be
guaranteed and may result in an abnormal end to application execution.

• If the message is in public memory, it must start at the base of public

Condition Code

 C V N Z

- - - - - - - X

C Unchanged
V Unchanged
N Unchanged
Z Set if the signature is correct, cleared otherwise

Primitive Set and Number

Set One, Number 0xE2

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

302 MULTOS is a registered trademark of MULTOS Limited.

Verify PIN

Verifies the PIN which is either the local application PIN or the Global PIN depending on the access_list bit
settings in the ALC. See Initialise PIN for details.

Availability

MULTOS 4 MULTOS 4.2 MULTOS 4.3.1 MULTOS 4.3.2 MULTOS 4.4 MULTOS 4.5.x

Syntax

PRIM 0xE7

Arguments

None.

Stack Usage

Stack In PINLen PINAddr

Stack Out Status

PINAddr is a 2 byte address of a buffer containing the PIN to be verified.
PinLength (1 byte) is the length of the PIN pointed to by PINAddr.

Status is a 2 byte value, 0x5AA5 for PIN verified and 0xA55A for PIN NOT verified. A value of 0xAAAA
indicates that verification has been disabled.

Remarks

This primitive will abend if the PIN has not yet been initialised.

This primitive does NOT maintain the value of the PIN Try Counter. The application must do this.

Condition Code

 C V N Z

- - - - - - - -

C Unchanged
V Unchanged
N Unchanged
Z Unchanged

Primitive Set and Number

set zero, number 0xE7

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 303

APDU Commands
This section provides an alphabetical listing of APDU commands defined for MULTOS. The APDU
commands defined for MULTOS step/one are available under licence in a separate document [OFFCARD].
The areas covered here are:

 Enablement

Enablement is the initialisation (or pre-personalisation) of a MULTOS device’s configuration, ready for the
loading and deleting of applications. The APDU command used is SET MSM CONTROLS.

Application Loading

An application is loaded to a MULTOS device using APDU commands, CREATE MEL APPLICATION, LOAD
APPLICATION SIGNATURE, LOAD CODE, LOAD DATA, LOAD DATA (Extended), LOAD DIR FILE RECORD, LOAD
FCI RECORD, LOAD KTU CIPHERTEXT and OPEN MEL APPLICATION.

Application Deletion

An application is deleted from a MULTOS device using the APDU command DELETE MEL APPLICATION.

ISO Commands

MULTOS devices also support ISO defined commands, GET RESPONSE, READ BINARY, READ RECORD and
SELECT FILE.

Device Information

Details about a particular MULTOS device can be obtained by APDU commands, CHECK DATA, GET
CONFIGURATION DATA, GET DATA, GET MANUFACTURER DATA and GET MULTOS DATA.

Other

Other APDU commands supported are CARD UNBLOCK and GET PURSE TYPE.

Usage Notes

The subsections that follow provide a list of status word values that can be returned in response to the
command. There are two cases that have not been included due to their ubiquity. In every case successful
completion is indicated by a status word value of 90 00. In those cases where data is returned it is also
possible to receive a status word of 61 xx if the La value is greater than the Lc value.

The APDU command table values are all hexadecimal despite not having the ‘0x’ prefix.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

304 MULTOS is a registered trademark of MULTOS Limited.

CARD UNBLOCK

The Card Unblock command is used by an IFD to unblock a MULTOS device.

Availability

MULTOS 3 MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

80 08 00 00 08 CUBMAC -

The CUBMAC is an 8-byte value device unique value supplied by the KMA.

APDU Response

Status word values that can be returned are:

9D 60 MAC verification failed
9D 61 Maximum number of unblocks reached
9D 62 This is not a blocked device

No data is returned in response to this command.

Remarks

Card Unblock command unblocks a device that has been previously blocked by an application using the
Card Block primitive.

This command requires a Card Unblock MAC, CUBMAC, to be sent as command data. The CUBMAC is
specific to each MULTOS device and can be obtained by the MULTOS Issuer from the MULTOS KMA.

The Card Unblock command can only be used once during the lifetime of a MULTOS device.

The Card Unblock command has been removed from MULTOS 4.3 as the mechanism for blocking and
unblocking a card has been revised.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 305

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

306 MULTOS is a registered trademark of MULTOS Limited.

CHECK DATA

The Check Data command checks a specified area of a MULTOS device’s memory in order to prove its
authenticity. The challenge value is a random number agreed upon by a Personalisation Bureaux and the
MULTOS OS Implementer. Both parties then send the same command and parameters to their devices, if
the responses match the MULTOS devices are genuine.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is only available before enablement.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 06 00
or
01

00
or
01

0C
or
0E

challenge value +
check data start address +
check data length

10

See the Remarks section for more information on the permitted P1, P2 and Lc combinations.

The challenge value is an 8-byte data block. The start address and data length are variable in length as
explained in the Remarks section.

APDU Response

Status word values that can be returned are:

9D 31 Check data parameter is incorrect (invalid length)
9D 32 Check data parameter is incorrect (illegal memory check area)
9D 63 Crypto function not supported
6A 83 Function not supported

A 16-byte check data digest is returned upon successful execution of the command.

Remarks

The CHECK DATA command takes as a parameter the physical address of the device memory being checked.
In all cases the address offset specified is a logical offset from the beginning of the memory area to be
checked.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 307

The response “Crypto function not supported” is returned if the contactless interface is in use. If the
command is issued after the device has been enabled, the response “Function not supported” will be
returned.

As of MULTOS 4.2 the functionality has also been extended so that it can handle implementations which
have more than 64K of ROM and EEPROM.

For devices where the combined ROM and EEPROM size is less than 64K:

• P1 must be set to 0x00

• P2 must be set to 0x00

• The command data field ‘check_data_start_address’ is a 16 bit value

• The command data field ‘check_data_length’ is a 16 bit value

• The Lc value must be 0x0C

• If P1 is set to 0x01, the response will be 9D63 ‘function not supported’

• Only APDU command possible is: BE 06 00 00 0C [data field] 10

For devices where the combined ROM and EEPROM size is greater than or equal to 64K:

• P1 must be set to 0x01

• P2 may be either 0x00 or 0x01, where 0x00 indicates that the check data operation should be done
on the ROM area and where 0x01 indicates that the check data operation should be done on the
EEPROM area

• The command data field ‘check_data_start_address’ is a 24 bit value

• The command data field ‘check_data_length’ is a 24 bit value

• The Lc value must be 0x0E

• If P1 is set to 0x00, the response will be 9D63 ‘function not supported’

• Possible APDU commands are:
o BE 06 01 00 0E [data field] 10
o BE 06 01 01 0E [data field] 10

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

308 MULTOS is a registered trademark of MULTOS Limited.

CREATE MEL APPLICATION

This command is the last sent in the application loading process. The Application Load Certificate is sent as
data, which allows MULTOS to retrieve and authenticate the application and associated data.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 16 00 00 var. Application Load
Certificate

-

The data sent is the Application Load Certificate that corresponds to the application being loaded.

APDU Response

Status word values that can be returned are:

6A 81 Retry counter expired
9D 50 Invalid MCD Issuer Product ID
9D 51 Invalid MCD Issuer ID
9D 52 Invalid Set MSM Controls Data Date
9D 53 Invalid MCD number
9D 54 Reserved Field Error
9D 55 Reserved Field Error
9D 56 Reserved Field Error
9D 57 Reserved Field Error
9D 05 Incorrect certificate type
9D 15 Application not open
9D 19 Invalid certificate
9D 1A Invalid signature
9D 1B Invalid key transformation unit
9D 1E Application signature does not exist
9D 1F KTU does not exist
9D 63 Crypto function not supported

No data is returned in response to this command.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 309

Remarks

Create MEL Application is an MSM command and is always available. However, in contactless mode, this
command can only be executed when the cryptographic coprocessor is available. When it is not, the
device will return "Crypto function not supported".

From MULTOS 4 the Application Load Certificate may be transmitted over several CREATE MEL
APPLICATION commands. The device will build the certificate using the data components in the order in
which they arrive.

If the CREATE MEL APPLICATION command fails then a retry counter is reduced by one. When the counter
reaches 0 the device will not allow any further loads. Note that this counter value can not be incremented.
See the MULTOS Implementation Report [MIR] to find out the retry counter value.

From MULTOS 4.2 there is an optional retry counter to limit the number of successful Application load
operations a single device will perform. This prevents an attacker driving an unlimited number of
operations using the device’s secret key by repeatedly loading and deleting an application which could be a
benefit for DPA attacks. To find out the retry counter value see the MULTOS Implementation Report [MIR].

When the function is not completed in a low power environment the device will abnormally end execution.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

310 MULTOS is a registered trademark of MULTOS Limited.

DELETE MEL APPLICATION

This command is used to delete an application from a MULTOS device.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 18 00 00 var. Application Delete
Certificate

-

The data sent is the Application Delete Certificate that corresponds to the application to be removed from
the MULTOS device.

APDU Response

Status word values that can be returned are:

6A 81 Retry counter has expired
9D 50 Invalid MCD Issuer Product ID
9D 51 Invalid MCD Issuer ID
9D 52 Invalid Set MSM Controls Data Date
9D 53 Invalid MCD number
9D 05 Incorrect certificate type
9D 15 Application not open
9D 19 Invalid certificate
9D 20 Application not loaded
9D 63 Crypto function not supported

No data is returned in response to this command.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 311

Remarks

DELETE MEL APPLICATION is an MSM command and is always available. However, in contactless mode,
this command can only be executed when the cryptographic coprocessor is available. When it is not, the
device will return "Crypto function not supported".

From MULTOS 4 the Application Delete Certificate may be transmitted over several CREATE MEL
APPLICATION commands. The device will build the certificate using the data components in the in which
they arrive.

If the DELETE MEL APPLICATION command fails then a retry counter is reduced by one. When the counter
reaches 0 the device will not allow any further deletions. Note that this counter value can not be
incremented. See the MULTOS Implementation Report [MIR] to find out the retry counter value.

When the function is not completed in a low power environment the device will abnormally end execution.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

312 MULTOS is a registered trademark of MULTOS Limited.

FREEZE

This command can be used with MULTOS devices that support step/one application loading and deleting.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5.x

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

0xBE 0x1A - - 0x91
or
0xD8

freeze_certificate || certificate_signature -

The freeze certificate and signature are generated by the step/one certificate generation tools appropriate
to the product vendor.

APDU Response

Status word values that can be returned are:

0x9000 Success
0x6A81 Function not supported
0x9D05 Incorrect certificate type
0x9D19 Invalid certificate
0x9D1D Enablement data not set
0x9D64 No applications loaded

Standards

MULTOS
step/one

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 313

GET CONFIGURATION DATA

This command allows a terminal to retrieve extended information about the MULTOS device. The
command assists device management by providing the immediate determination of a device’s
configuration and capabilities without reference to an alternate data source. Where appropriate, the data
is available before and after a device is enabled.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

80 10 Token
MSB

Token
LSB

- - 00

The values in P1 and P2 represent the most significant byte and least significant byte of the request token.
Acceptable token values are given in the table in the Remarks section.

APDU Response

Status word values that can be returned are:

61 xx xx byte of data to retrieve using Get Response
6B 00 Wrong Parameters P1,P2

Data is returned in response to this command. See the table in the Remarks section for further details.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

314 MULTOS is a registered trademark of MULTOS Limited.

Remarks

The command returns data based on the P1 and P2 parameters. The table below has more details.

Token Request Data Returned

0x00 00 Platform Identification os_type +
os_version +
supported_functions +
product_name

0x01 00 Largest ALU Possible max_alu_size

0x02 00 Communication Transfer
Parameters

comms_tx_parameters

0x03 00 ATR Control

cold_reset_application_id +
warm_reset_application_id

0x04 00 AMD Version Information amd_version_data

0x05 00 Codelets available codelet_list

0x06 00 Applications loaded* {application_id +
application_memory_allocated}

0x07 00 MKD_PKC* MULTOS_pk_certificate

0x08 00 Codelet checksums* The 4 byte MULTOS checksum for
each codelet listed in the same
orders as the codelets in token
0x0500

0x09 00 ATS Control* application_ATS_selected.applicati
on_id
or
MULTOS_aid

0x0A 00 Build Number** The build number of the
implementation. Encoding defined
by the implementer.

0x0B 00 Primitives Supported** A list of bits, one bit per possible
primitive (4 sets of 256 primitives,
with a "1" indicating that the
primitive is supported. The first
byte contains the bits for set 0
primitives 0-7 (held in bits 0-7), the
second byte for set 0 primitives 8-
17 and so on.

0x0C 00 Chip Identity Data** Silicon manufacturer specific chip
identity data.

Starred token values are not implemented on all masks but are mandatory from MULTOS 4.5* and
MULTOS 4.5.1** onwards.

The Platform Identification request returns product specific values.

The Largest ALU Possible request returns the maximum size of an ALU that can be loaded.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 315

The Communications Transfer Parameters request returns the device’s x and y parameters along with an
indication of what contactless protocol, if any, is supported.

The ATR Control request returns two 17-byte AIDs. Both are formatted such that the first byte is the
length of the following ATR value, the next bytes are the ATR and the field is padded with 0xFF up to the
17-byte size limit. If no application controls an ATR the length byte will be set to 0x00 followed by 17 bytes
of 0xFF.

The AMD Version Information request returns a 2-byte AMD ID and a 2-byte AMD version value.

The Codelets available request returns a list of 2-byte Codelet IDs

The Applications loaded request returns a list of applications loaded and their memory allocations. Each
entry in the list consists of a 17-byte application ID and 3-byte application_memory_allocated data field.

The MKD_PKC request returns the MCD’s Certified Public Key.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

316 MULTOS is a registered trademark of MULTOS Limited.

GET DATA

This command allows an IFD to retrieve the Data Objects (DO) from any generic MAOS device. Specifically
for MULTOS, this command returns data objects to identify the MULTOS platform type and other objects in
a structure as agreed with Global Platform.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

00 CA 00 66 - - 00

APDU Response

This command will always execute successfully. The card data DOs are returned in response to this
command.

Remarks

The DO returned is of the form:

card_data_Dos

66 Len card_data_discretionary_DOs

73 Len tag_issuing_authority card_data_DO_items

 06 Len tag_issuing_a
uthority_OID

platform_identification logical_id_qualifier

 TBA –
MAOSCO / GP

 platform_id
_tag

Len platform_id_value logical_id_t
ag

Len logical_id_value

 TBA TBA

 06 Len platform
_id_OID

 06 Len multos_OID

 e.g. {multos_OID, 0, 5, 01} TBA - MAOSCO

The usage of P1 and P2 is as specified in ISO/IEC 7816-4 Section 6.9.3.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 317

Standards

ISO/IEC 7816-4, Section 6.9.
GlobalPlatform
MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

318 MULTOS is a registered trademark of MULTOS Limited.

GET MANUFACTURER DATA

This command allows a terminal to retrieve information about the hardware of the MULTOS device.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

80 02 00 00 - - 16

APDU response

This command will always execute successfully. Data is returned by this command.

Remarks

The data returned by this command is of the form:

Field Size(bytes)

IC Manufacturer ID 1

IC Type 1

ROM IC Details 2

MCD ID 6

Initialisation Date 7

Processor Page Size 1

Maximum Transmit TPDU
Size

2

Maximum Receipt TPDU Size 2

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 319

GET MULTOS DATA

This command allows an IFD to retrieve information about the MULTOS device.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

80 00 00 00 - - 7F

APDU response

This command will always execute successfully. Data is returned by this command

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

320 MULTOS is a registered trademark of MULTOS Limited.

Remarks

The data returned is of the form:

Field Size (bytes)

MULTOS Version Number 2

IC Manufacturer ID 1

Implementer ID 1

MCD ID 6

Product ID 1

Issuer ID 4

MSM Controls Data Date 1

MCD Number 8

RFU 80

Maximum Dynamic Size 2

Maximum Public Size 2

Maximum DIR File Record Size 2

Maximum FCI Record Size 2

Maximum ATR Historical Byte Record
Size

2

Maximum ATR File Record Size 2

MULTOS Public Key Certificate Length 2

Security Level 1

Certification Method ID 2

Application Signature Method ID 2

Encipherment Descriptor 2

Hash Method ID 2

The fields Product ID, Issuer ID, MSM Controls Data Date, MCD Number and RFU can collectively be
referred to MSM Issuer Permissions.

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 321

GET PURSE TYPE

This command identifies which Mondex Purse Type a MULTOS device can support: Originator or Non-
originator.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

The command is a Master File command and, therefore, is only available when the Master File has been
selected.

APDU Command

CLA INS P1 P2 Lc Data Le

80 04 00 00 - - 01

APDU Response

This command will always execute successfully. One byte of data is returned by this command.

Remarks

A return value of 0x4F indicates that the device can support an originator purse, while a value of 0xB0
indicates a non-originator. Any other values are undefined.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

322 MULTOS is a registered trademark of MULTOS Limited.

GET RESPONSE

This command is issued by an IFD in response to a previous status word of 61 xx, where the xx indicates the
number of bytes to retrieve.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

00 C0 00 00 - - var.

The Le to use is dependent on the value given least significant byte of a 61 xx status word issued in
response to the command immediately preceding.

APDU Response

Status word values that can be returned are:

62 81 Part of returned data may be corrupted
67 00 Wrong length, Le field incorrect
6A 86 Incorrect parameters P1,P2
6C xx Wrong length, xx indicates actual length

The data returned is of variable length.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 323

Remarks

The class byte may also be set to the same value as the last command; i.e., the command that generated
the response data.

In general, under the T = 0 transport protocol a status word of 61 xx is returned when the length of data to
be returned is greater than the expected length; i.e., La > Le. When that status word is issued an IFD may
send the command GET RESPONSE.

If MULTOS receives an unexpected GET RESPONSE command it will be routed to the currently selected
application, or an error returned if no application is selected.

Standards

MULTOS
ISO 7816, Part 4

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

324 MULTOS is a registered trademark of MULTOS Limited.

LOAD APPLICATION SIGNATURE

This command is used to load the Application Signature of an ALU. The Application Signature may be
divided into component blocks, each of which is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the OPEN MEL APPLICATION command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 28 MSB
Starting
Offset

LSB
Starting
Offset

var. Application signature
component

-

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The Application Signature components can be sent in any order. The parameter bytes P1 and P2 are used
to indicate the address within the reserved application signature memory area to load the component of
size Lc. P1 is the most significant byte, while P2 is the least significant byte of the address. Note that the
addressing uses zero based counting.

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 325

LOAD CODE

This command is used to load the Code of an ALU. The Code may be divided into component blocks, each
of which is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the OPEN MEL APPLICATION command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 24 MSB
Starting
Offset

LSB
Starting
Offset

var. Code component -

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The Code components can be sent in any order. The parameter bytes P1 and P2 are used to indicate the
address within the reserved Code memory area to load the component of size Lc. P1 is the most significant
byte, while P2 is the least significant byte of the address. Note that the addressing uses zero based
counting.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

326 MULTOS is a registered trademark of MULTOS Limited.

LOAD DATA

This command is used to load the Data of an ALU. The Data component may be divided into component
blocks of data, each of which is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the OPEN MEL APPLICATION command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 26 MSB
Starting
Offset

LSB
Starting
Offset

var. Data component -

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The Data components can be sent in any order. The parameter bytes P1 and P2 are used to indicate the
address within the reserved Data memory area to load the component of size Lc. P1 is the most significant
byte, while P2 is the least significant byte of the address. Note that the addressing uses zero based
counting.

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 327

LOAD DATA (Extended)

Description

This command is used to load the Data of an Application or an Extended Data Application containing static
data greater than 64k. The Data component may be divided into component blocks of data, each of which
is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the OPEN MEL APPLICATION command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 26 MSB
Starting
Offset

LSB
Starting
Offset

var. Data component -

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The Data components can be sent in any order.
For a normal Application, the parameter bytes P1 and P2 are used to indicate the address within the
reserved Data memory area to load the component of size Lc. P1 is the most significant byte, while P2 is
the least significant byte of the address. Note that the addressing uses zero based counting.

For an Extended Data Application, the parameter bytes P1 and P2 are used to indicate the block number of
the 255-byte blocks within the reserved Data memory area to load the component of size Lc. P1 is the
most significant byte, while P2 is the least significant byte of the block number. Note that the block
number uses zero based counting.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

328 MULTOS is a registered trademark of MULTOS Limited.

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 329

LOAD DIR FILE RECORD

This command is used to load the Directory File Record of an ALU. The Directory File Record may be
divided into component blocks of data, each of which is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the command OPEN MEL APPLICATION
command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 20 MSB
Starting
Offset

LSB
Starting
Offset

var. DIR File Record
component

-

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The Directory File Record components can be sent in any order. The parameter bytes P1 and P2 are used
to indicate the address within the reserved Directory File Record memory area to load the component of
size Lc. P1 is the most significant byte, while P2 is the least significant byte of the address. Note that the
addressing uses zero based counting.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

330 MULTOS is a registered trademark of MULTOS Limited.

LOAD FCI RECORD

Description

This command is used to load the File Control Information Record of an ALU. The FCI Record may be
divided into component blocks of data, each of which is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the OPEN MEL APPLICATION command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 22 MSB
Starting
Offset

LSB
Starting
Offset

var. FCI Record component -

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The FCI Record components can be sent in any order. The parameter bytes P1 and P2 are used to indicate
the address within the reserved FCI Record memory area to load the component of size Lc. P1 is the most
significant byte, while P2 is the least significant byte of the address. Note that the addressing uses zero
based counting.

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 331

LOAD KTU CIPHERTEXT

This command is used to load the Key Transformation Unit of an ALU. The KTU may be divided into
component blocks of data, each of which is individually transmitted using this command.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is available after enablement and must follow the OPEN MEL APPLICATION command.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 2A MSB
Starting
Offset

LSB
Starting
Offset

var. KTU component -

No data is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 15 Application not open
9D 17 Invalid offset

Remarks

The KTU components can be sent in any order. The parameter bytes P1 and P2 are used to indicate the
address within the reserved KTU memory area to load the component of size Lc. P1 is the most significant
byte, while P2 is the least significant byte of the address. Note that the addressing uses zero based
counting.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

332 MULTOS is a registered trademark of MULTOS Limited.

OPEN MEL APPLICATION

This command reserves and initialises memory in order to load an application into the MULTOS device,
checking that there is sufficient memory of each type for a successful load. If the load can proceed, the
MULTOS device will return its certified public key.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 12 00 00 var. Open command data
component

00

The device’s unique certified public key is returned in response to this command.

APDU Response

Status word values that can be returned are:

9D 07 Incorrect session data size
9D 08 Incorrect DIR file record size
9D 09 Incorrect FCI record size
9D 10 Insufficient memory to load application
9D 11 Invalid Application ID
9D 12 Duplicate Application ID
9D 13 Application previously loaded
9D 14 Application history full
9D 1D MSM controls not set
9D 21 Invalid open command data length
9D 50 Invalid MCD Issuer Product Id
9D 51 Invalid MCD Issuer Id
9D 52 Invalid Set MSM Controls Data Date
9D 53 Invalid MCD number

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 333

Remarks

When the command is transmitted, any other currently open or partially loaded application is abandoned.

The Lc value is given as variable; however, there are only two permissible values. They are: 0x89, when no
application code hash is present and 0x9D, when an application code hash (calculated using the SHA-1
algorithm) is present.

The Open command data component consists of:

Field Size (bytes)

MCD Issuer Product IDs 32

MCD Issuer ID 4

Set MSM Controls Data
Dates

32

MCD Number 8

RFU 18

Application ID 17

Random Seed 8

File Mode Type 1

Code Size 2

Data Size 2

Session Data Size 2

Application Signature Length 2

KTU Length 2

DIR File Record Size 2

FCI Record Size 2

Access List 2

Application Code Hash
Length

1

Application Code Hash Application Code Hash
Length

The fields Random Seed and Access List were introduced as of MULTOS 4. Neither field is present for a
MULTOS 3 OPEN MEL APPLICATION command.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

334 MULTOS is a registered trademark of MULTOS Limited.

In order to open an application successfully:

• the MULTOS device must have been enabled

• there must have enough free memory space of each type to load the ALU

• no application with the same Application ID (AID) as an already loaded application may be loaded.

• If the random seed is non-zero, then the combination of Application ID and Random Seed must not
have previously been loaded to this MULTOS device.

Standards

MULTOS

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 335

READ BINARY

Description

This command reads a block of bytes from a transparent MULTOS elementary file or from an area of
application Static memory previously specified by an application.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS 4.4 MULTOS

4.5.x

 * *

* reading from an area of application Static memory is an optional feature in MULTOS 4.3

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

00/0C B0/B1 see
below

see
below

see
below

see below var.

If a MULTOS elementary file is being read then CLA must equal 0x00 and INS must equal 0xB0. In this case
P1 and P2 contain the offset, the most significant bit of the offset must equal zero and no command data is
supplied.

If an area of application Static memory is being read then CLA must equal 0x00 if secure messaging is not
being used or 0x0C if secure messaging is being used. INS must equal 0xB0 if an offset of less than 32768
bytes is specified and in this case P1 and P2 contain the offset. If an offset of 32768 bytes or more is
specified then INS must equal 0xB1 and the command data contains the offset in TLV format. If secure
messaging is being used then the command data must contain the appropriate ciphertext and MAC.

APDU Response

If a MULTOS elementary file is being read then the response contains the file data.

Status word values that can be returned are:

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

336 MULTOS is a registered trademark of MULTOS Limited.

62 81 Part of returned data may be corrupted
62 82 End of file reached
67 00 Wrong Le field
69 81 Command incompatible with file structure
69 82 Security status not satisfied
69 86 Command not allowed, no current EF
6A 81 Function not supported
6A 82 File not found
6B 00 Wrong parameters, offset outside EF
6C xx Wrong length, xx indicates actual length

If an area of application Static memory is being read then the response contains the area of Static being
read, possibly in TLV format. If secure messaging is being used then the response data is encrypted and a
MAC is also included.

Status word values that can be returned depend upon the functionality of the application that enabled the
accelerated READ BINARY command.

Remarks

The operating system provides one transparent elementary file: the ATR File. This command must be used
to read the data in that file.

Standards

ISO7816 Part 4, 6.1 Read Binary Command

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 337

READ RECORD(S)

This command reads a record from the currently selected fixed length elementary file.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

00 B2 Record
Number

0x04 - - var.

Upon successful execution of this command a record is returned.

APDU Response

Status word values that can be returned are:

62 81 Part of returned data may be corrupted
62 82 End of file reached
67 00 Wrong length, empty Le field
69 81 Command incompatible with file structure
69 82 Security status not satisfied
6A 81 Function not supported
6A 82 File not found
6A 83 Record not found
6C xx Wrong length, xx indicates actual length

Remarks

The response message gives the contents of the specified record(s) of an EF with record structure.

The operating system provides one fixed length elementary file: the DIR File. This command must be used
to read the data in that file and the P2 value must be 0x04.

Standards

MULTOS Specification
ISO7816 Part 4 Section 6.5

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

338 MULTOS is a registered trademark of MULTOS Limited.

SELECT FILE

This command is used to select the Master File (MF), the Directory File (DIR), the ATR File or an application
loaded into the MULTOS device.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

00 A4 var. var. var. var. var.

See the remarks section for valid P1 P2 values.

Data may be returned in response to this command.

APDU Response

Status word values that can be returned are:

62 83 Selected File invalidated
62 84 FCI not formatted according to ISO 7816
67 00 Wrong length; invalid Lc or invalid command case
6B 00 Wrong Parameters
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1,P2
6A 87 Lc inconsistent with P1,P2

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 339

Remarks

The following table shows all acceptable P1, P2 and Lc values that can be for the command Select File.
MULTOS will not handle a Select File command with any other combinations. However, an application may
use any combination.

P1 P2 LC CMD DATA SELECTS IF FILE EXISTS,
RETURNS

00 00 none none Master File Success: 90 00

00 00 02 3F 00 Master File Success: 90 00

00 00 02 2F 00 Directory File* Success: 90 00

00 00 02 2F 01 ATR File Success: 90 00

00 0C 02 2F 00 Directory File* Success: 90 00

00 0C 02 2F 01 ATR File Success: 90 00

04 00 01 - 10 AID or
partial AID

Application (DF) Success and FCI

04 02 01 - 10 AID or
partial AID

Application (DF) Success and FCI

04 0C 01 - 10 AID or
partial AID

Application (DF) Success: 90 00

08 00 02 3F 00 Master File Success: 90 00

08 00 02 2F 00 Directory File** Success: 90 00

08 0C 02 3F 00 Master File Success: 90 00

08 0C 02 2F 00 Directory File** Success: 90 00

The Lc listing for all the cases where P1 is 0x04 indicates that the Lc must have a value between 0x01 and
0x10.

The Le is given in APDU Command as variable. FCI data is returned only if it is present for an application
and in the cases where P1 and P2 are 0x04 0x00 or 0x04 0x02.

If MULTOS cannot successfully process the command, and an application is currently selected, MULTOS
passes the command to the selected application to handle or reject as appropriate.

The application selection process will operate over all of the loaded applications and not just the first
application that has an AID that (partially) matches the AID in the SELECT command. The command will
reply with “file not found” only if there are no loaded applications that have an AID that (partially) matches
and which are permitted over the selected interface.

If the MULTOS device is blocked then the command is not available and a status response of 6A81 is
returned.

If the application has the “Process Events” permission, MULTOS does not test the most significant 6 bits of
P2. The processing of the least significant 2 bits of P2 remain unchanged. For more details on Process
Events please see [MDG].

NOTE*: Processed by the currently selected application, if there is one.
NOTE**: Always processed by MULTOS and any currently selected application is deselected.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

340 MULTOS is a registered trademark of MULTOS Limited.

The MULTOS AID is 0xA0000001444D554C544F53.

Standards

MULTOS
ISO7816 Part 4

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 341

SET MSM CONTROLS

This command is used to transmit MSM Controls Data, also referred to as Enablement Data, to the target
device.

Availability

MULTOS 4 MULTOS

4.2

MULTOS

4.3.1

MULTOS

4.3.2

MULTOS

4.4

MULTOS

4.5

Conditional Usage and Security

This command is always available.

APDU Command

CLA INS P1 P2 Lc Data Le

BE 10 00 00 var. MSM Controls Data
component

-

The Lc field gives the length of MSM Controls Data component transmitted in the command.

APDU Response

Status word values that can be returned are:

9D 40 Invalid MSM controls ciphertext OR
9D 40 Already enabled with step/one data (MULTOS products supporting step/one loading)
9D 41 MSM controls set

No data is returned in response to this command.

Remarks

The MSM Controls Data may be transmitted over several APDUs. The same CLA INS P1 and P2 values are
used for each command sent. Note that the data must be transmitted sequentially so that the MSM
Controls Data can be properly reconstructed on the device.

MSM Controls Data is specific to an individual MULTOS device. The same data cannot be used on different
devices.

Standards

MULTOS

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

342 MULTOS is a registered trademark of MULTOS Limited.

MULTOS Status Codes
The previous section listed the commands that are handled by MULTOS along with possible status word
responses. A MULTOS specific status word always has the most significant byte set to 0x9D. The following
table provides a comprehensive listing of all MULTOS specific status words and provides an explanation of
each.

SW2 Description Explanation

05 Incorrect certificate type The MULTOS device was given an ADC when it expected an
ALC or vice-versa.

07 Incorrect session data size The session data size given in the ALC is larger than the
maximum available on the device.

08 Incorrect DIR file record size The DIR file record size given in the ALC is larger than the
maximum available on the device.

09 Incorrect FCI record size The FCI record size given in the ALC is larger than the
maximum available on the device.

10 Insufficient memory to load
application

The device is unable to allocate all the memory required to
perform the application load

11 Invalid application id The Application ID length is either 0 or greater than 16
bytes in size.

12 Duplicate application id An application with the same AID is currently loaded. The
AID value must be unique on the device.

13 Application previously loaded The combination of AID and non-zero random seed value
held in the ALC is already listed in the application history
list.

14 Application history full An attempt has been made to load or delete an application
using a non-zero random seed value when the application
history list is full. Loads or deletes that do not use the
random seed value will be handled normally.

15 Application not open An attempt has been made to send a LOAD … or CREATE
MEL APPLICATION command prior to the successful
execution of the OPEN MEL APPLICATION command.

17 Invalid offset Given in response to a LOAD … command when the
combination of the P1 P2 specified offset and Lc value
result in an attempt to load data outside the area reserved
for the component in the OPEN MEL APPLICATION
command.

18 Application already loaded An attempt has been made to load a shell or default
application onto a MULTOS device that already has
applications loaded. Or the application is in fact already on
the device.

19 Invalid certificate The ALC or ADC received by the MULTOS device was not
successfully authenticated.

1A Invalid signature The Application Signature provided was not successfully
verified.

1B Invalid key transformation unit The deciphered KTU contains data that does not match the
corresponding values on the device.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 343

The KTU for the MULTOS device is invalid.

1D MSM controls not set The MULTOS device has not yet been enabled.

1E Application Signature does not
exist

The MULTOS device did not receive an Application
Signature when it was expecting one.

1F KTU does not exist The MULTOS device did not receive a KTU when it was
expecting one.

20 Application not loaded An attempt has been made to delete an application from a
MULTOS device that doesn’t exist.

30 Check data parameter is
incorrect (invalid start address)

The start address given is not found in the memory area to
be checked.

31 Check data parameter is
incorrect (invalid length)

The combination of start address and length is not found in
the memory area to be checked.

32 Check data parameter is
incorrect (illegal memory check
area)

The address and length given represent a valid memory
area, but it is not permitted to perform a check data over it.

40 Invalid MSM controls ciphertext The format or unverified content of the MSM controls data

41 MSM controls set An attempt has been made to enable a device that has
already been enabled

42 Set MSM Controls data length
less than 2 bytes

The very first command sent includes the total length of
data to be sent. If the first command does not contain at
least two bytes of data, this error is given.

43 Invalid msm controls data length The data is less than an expected minimum, greater than an
expected maximum or its size is not an integer multiple of 8

44 Excess msm controls ciphertext More data has been sent to the device than was expected.

45 Verification of msm controls data
failed

The MSM controls data was not successfully verified.

50 Invalid mcd issuer product id The bit mapped product IDs in the ALC or ADC does not
contain the MULTOS device’s product ID.

51 Invalid mcd issuer id The MULTOS device issuer ID does not match that given in
the ALC or ADC.

52 Invalid set msm controls data
date

The bit mapped MSM Controls Data Dates in the ALC or
ADC does not contain the MULTOS device’s date.

53 Invalid mcd number The MULTOS device MCD Number does not match that
given in the ALC or ADC.

54 Reserved field error The reserved field in the ALC does not match the value
given in the OPEN MEL APPLICATION command

55 Reserved field error The reserved field in the ALC does not match the value
given in the OPEN MEL APPLICATION command

56 Reserved field error The reserved field in the ALC does not match the value
given in the OPEN MEL APPLICATION command

57 Reserved field error The reserved field in the ALC does not match the value
given in the OPEN MEL APPLICATION command

60 MAC verification failed Card block or unblock MAC did not verify.

61 Maximum number of unblocks
reached

The device will not process this or any further Card Unblock
commands because the limit has been reached

62 This is not a blocked device An attempt to unblock a device that is not blocked has
been made.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

344 MULTOS is a registered trademark of MULTOS Limited.

Instruction Map
Instructions may take their full form or a compacted form. In order to use their compacted form, the
relevant conditions must be met.

The CEN pseudo instruction is used to tell the AAM that all instructions that follow will use their compacted
form. The CDIS pseudo instruction cancels the use of compacted instructions. The COMPACT_OFF pseudo
instruction turns the use of compacted instructions off for the next instruction only.

The C compiler automatically handles compaction when the –opt switch is used with an argument > 0.

Note: In the instruction table below, where the values of ‘n’ and ‘offset’ are encoded in a single byte ‘b’,
the encoding of ‘b’ is n (2bits) | offset (6 bits) where

Encoding of n
in binary

Value of n
in decimal

00 1

01 2

10 4

11 8

The 6 bit offset values may represent values in the ranges -32 to +31, -64 to -1 or 0 to 63 depending on the
instruction.

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

0x00 0 SYSTEM No Operation

 1 SW1 SW2 set SW1 and SW2

 2 La Set La

 3 SW1 SW2 La Set SW1, SW2 and La

 4 Exit

 5 SW1 SW2 set SW1, SW2 and exit

 6 La Set La and exit

 7 SW1 SW2 La Set SW1, SW2, La and exit

0x01 0 CEN/CDIS b If b == 0, instruction is Compact Enable (CEN). If b == 1,
instruction is Compact Disable (CDIS). Otherwise an illegal
instruction.

 1 BRANCH RelCP Branch RelCP if Equal

 2 RelCP Branch RelCP if Less Than

 3 RelCP Branch RelCP if Less/Equal

 4 RelCP Branch RelCP if Greater Than

 5 RelCP Branch RelCP if Greater/Equal

 6 RelCP Branch RelCP if Not Equal

 7 RelCP Branch RelCP

0x02 0 JUMP Jump to CP on stack

 1 CP Jump to CP if Equal

 2 CP Jump to CP if Less Than

 3 CP Jump to CP if Less/Equal

 4 CP Jump to CP if Greater Than

 5 CP Jump to CP if Greater/Equal

 6 CP Jump to CP if Not Equal

 7 CP Jump to CP

0x03 0 CALL Call CP on stack

 1 CP Call CP if Equal

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 345

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 2 CP Call CP if Less Than

 3 CP Call CP if Less/Equal

 4 CP Call CP if Greater Than

 5 CP Call CP if Greater/Equal

 6 CP Call CP if Not Equal

 7 CP Call CP

0x04 0 STACK n Push n bytes of zeroes onto the stack.

 1 b push byte b onto the stack

 2 w Push word w onto the stack

 3 COMPACT_
OFF

 Temporarily suspend instruction compaction for the
following instruction only.

 4 STACK n Pop n bytes from the stack

 5 Pop one byte from the stack

 6 Pop one word from the stack

 7 BITTEST o Reserved for prototype new instruction.

0x05 0 PRIMRET p Call Primitive p

 1 p a Call Primitive p with arg a

 2 p a b Call Primitive p with args a,b

 3 p a b c Call Primitive p with args a,b,c

 4 Return from Call

 5 in Return from Call discarding in bytes

 6 out Return from Call with out bytes

 7 in out Return from Call discarding in bytes and returning out
bytes.

0x06 0 unused illegal instruction

 1 illegal instruction

 2 illegal instruction

 3 illegal instruction

 4 illegal instruction

 5 illegal instruction

 6 illegal instruction

 7 illegal instruction

0x07 0 LOAD n Duplicates top n bytes of stack

 1 n offset Push n bytes from SB[offset]

 2 n offset Push n bytes from ST[offset]

 3 n offset Push n bytes from DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Push n bytes from LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Push n bytes from DT[offset]

 6 n offset Push n bytes from PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Push n bytes from PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x08 0 STORE n Pop n bytes and store them to DT[-2*n]

 1 n offset Pop n bytes and store them to SB[offset]

 2 n offset Pop n bytes and store them to ST[offset]

 3 n offset Pop n bytes and store them to DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Pop n bytes and store them to LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Pop n bytes and store them to DT[offset]

 6 n offset Pop n bytes and store them to PB[offset]

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

346 MULTOS is a registered trademark of MULTOS Limited.

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Pop n bytes and store them to PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x09 0 LOADI n Load n bytes from the segment address at DT[-2] onto the
stack

 1 n offset Load n bytes from the segment address at SB[offset] onto
the stack

 2 n offset Load n bytes from the segment address at ST[offset] onto
the stack

 3 n offset Load n bytes from the segment address at DB[offset] onto
the stack

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Load n bytes from the segment address at LB[offset] onto
the stack

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Load n bytes from the segment address at DT offset] onto
the stack

 6 n offset Load n bytes from the segment address at PB[offset] onto
the stack

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Load n bytes from the segment address at PT[offset] onto
the stack

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x0A 0 STOREI n Pop n bytes from the stack and store them to the segment
address in DT[-2*n]

 1 n offset Pop n bytes from the stack and store them to the segment
address in SB[offset]

 2 n offset Pop n bytes from the stack and store them to the segment
address in ST[offset]

 3 n offset Pop n bytes from the stack and store them to the segment
address in DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Pop n bytes from the stack and store them to the segment
address in LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Pop n bytes from the stack and store them to the segment
address in LT[offset]

 6 n offset Pop n bytes from the stack and store them to the segment
address in PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Pop n bytes from the stack and store them to the segment
address in PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x0B 0 CMPBRA o Reserved for prototype new instruction.

 1 LOADA offset Load the segment address of SB[offset] onto the stack

 2 offset Load the segment address of ST[offset] onto the stack

 3 offset Load the segment address of DB[offset] onto the stack

 3 offset Compact version where 0 <= offset <= 255

 4 offset Load the segment address of LB[offset] onto the stack

 4 offset Compact version where -128 <= offset <= 128

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 347

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 5 offset Load the segment address of DT[offset] onto the stack

 6 offset Load the segment address of PB[offset] onto the stack

 6 offset Compact version where 0 <= offset <= 255

 7 offset Load the segment address of PT[offset] onto the stack

 7 offset Compact version where -256 <= offset <= -1

0x0C 0 INDEX illegal instruction

 1 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of SB[offset] to the product
and loads the result onto the stack

 2 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of ST[offset] to the product
and loads the result onto the stack

 3 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of DB[offset] to the product
and loads the result onto the stack

 3 b offset Compact version where 0 <= offset <= 255

 4 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of LB[offset] to the product
and loads the result onto the stack

 4 b offset Compact version where -128 <= offset <= 127

 5 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of DT[offset] to the product
and loads the result onto the stack

 6 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of PB[offset] to the product
and loads the result onto the stack

 6 b offset Compact version where 0 <= offset <= 255

 7 b offset Multiplies the byte at the top of the stack with b, adds the
segment address of a record of PT[offset] to the product
and loads the result onto the stack

 7 b offset Compact version where -256 <= offset <= -1

0x0D 0 SETB b Sets the byte at the top of the stack to b

 1 b offset Sets the byte at SB[offset] to b

 2 b offset Sets the byte at ST[offset] to b

 3 b offset Sets the byte at DB[offset] to b

 3 b offset Compact version where 0 <= offset <= 255

 4 b offset Sets the byte at LB[offset] to b

 4 b offset Compact version where -128 <= offset <= 127

 5 b offset Sets the byte at DT[offset] to b

 6 b offset Sets the byte at PB[offset] to b

 6 b offset Compact version where 0 <= offset <= 255

 7 b offset Sets the byte at PT[offset] to b

 7 b offset Compact version where -256 <= offset <= -1

0x0E 0 CMPB b Compares byte at the top of the stack with b

 1 b offset Compares byte at SB[offset] with b

 2 b offset Compares byte at ST[offset] with b

 3 b offset Compares byte at DB[offset] with b

 3 b offset Compact version where 0 <= offset <= 255

 4 b offset Compares byte at LB[offset] with b

 4 b offset Compact version where -128 <= offset <= 127

 5 b offset Compares byte at DT[offset] with b

 6 b offset Compares byte at PB[offset] with b

 6 b offset Compact version where 0 <= offset <= 255

 7 b offset Compares byte at PT[offset] with b

 7 b offset Compact version where -256 <= offset <= -1

0x0F 0 ADDB b Adds b to the byte at the top of the stack

 1 b offset Adds b to the byte at the byte stored at SB[offset]

 2 b offset Adds b to the byte at the byte stored at ST[offset]

 3 b offset Adds b to the byte at the byte stored at DB[offset]

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

348 MULTOS is a registered trademark of MULTOS Limited.

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 3 b offset Compact version where 0 <= offset <= 255

 4 b offset Adds b to the byte at the byte stored at LB[offset]

 4 b offset Compact version where -128 <= offset <= 127

 5 b offset Adds b to the byte at the byte stored at DT[offset]

 6 b offset Adds b to the byte at the byte stored at PB[offset]

 6 b offset Compact version where 0 <= offset <= 255

 7 b offset Adds b to the byte at the byte stored at PT[offset]

 7 b offset Compact version where -256 <= offset <= -1

0x10 0 SUBB b Subtracts b from the byte at the top of the stack

 1 b offset Subtracts b from the byte stored at SB[offset]

 2 b offset Subtracts b from the byte stored at ST[offset]

 3 b offset Subtracts b from the byte stored at DB[offset]

 3 b offset Compact version where 0 <= offset <= 255

 4 b offset Subtracts b from the byte stored at LB[offset]

 4 b offset Compact version where -128 <= offset <= 127

 5 b offset Subtracts b from the byte stored at DT[offset]

 6 b offset Subtracts b from the byte stored at PB[offset]

 6 b offset Compact version where 0 <= offset <= 255

 7 b offset Subtracts b from the byte stored at PT[offset]

 7 b offset Compact version where -256 <= offset <= -1

0x11 0 SETW w Sets the word stored at the top of the stack to w

 1 w offset Sets the word at SB[offset] to w

 2 w offset Sets the word at ST[offset] to w

 3 w offset Sets the word at DB[offset] to w

 3 w offset Compact version where 0 <= offset <= 255

 4 w offset Sets the word at LB[offset] to w

 4 w offset Compact version where -128 <= offset <= 127

 5 w offset Sets the word at DT[offset] to w

 6 w offset Sets the word at PB[offset] to w

 6 w offset Compact version where 0 <= offset <= 255

 7 w offset Sets the word at PT[offset] to w

 7 w offset Compact version where -256 <= offset <= -1

0x12 0 CMPW w Compares the word at the top of the stack with w

 1 w offset Compares w with the word stored at SB[offset]

 2 w offset Compares w with the word stored at ST[offset]

 3 w offset Compares w with the word stored at DB[offset]

 3 w offset Compact version where 0 <= offset <= 255

 4 w offset Compares w with the word stored at LB[offset]

 4 w offset Compact version where -128 <= offset <= 127

 5 w offset Compares w with the word stored at DT[offset]

 6 w offset Compares w with the word stored at PB[offset]

 6 w offset Compact version where 0 <= offset <= 255

 7 w offset Compares w with the word stored at PT[offset]

 7 w offset Compact version where -256 <= offset <= -1

0x13 0 ADDW w Adds w to the word at the top of the stack

 1 w offset Adds w to the word at SB[offset]

 2 w offset Adds w to the word at ST[offset]

 3 w offset Adds w to the word at DB[offset]

 3 w offset Compact version where 0 <= offset <= 255

 4 w offset Adds w to the word at LB[offset]

 4 w offset Compact version where -128 <= offset <= 127

 5 w offset Adds w to the word at DT[offset]

 6 w offset Adds w to the word at PB[offset]

 6 w offset Compact version where 0 <= offset <= 255

 7 w offset Adds w to the word at PT[offset]

 7 w offset Compact version where -256 <= offset <= -1

0x14 0 SUBW w Subtracts w from the word at the top of the stack.

 1 w offset Subtracts w from the word at SB[offset]

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 349

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 2 w offset Subtracts w from the word at ST[offset]

 3 w offset Subtracts w from the word at BB[offset]

 3 w offset Compact version where 0 <= offset <= 255

 4 w offset Subtracts w from the word at LB[offset]

 4 w offset Compact version where -128 <= offset <= 127

 5 w offset Subtracts w from the word at DT[offset]

 6 w offset Subtracts w from the word at PB[offset]

 6 w offset Compact version where 0 <= offset <= 255

 7 w offset Subtracts w from the word at PT[offset]

 7 w offset Compact version where -256 <= offset <= -1

0x15 0 CLEARN n Clears the top n bytes of the stack

 1 n offset Clears n bytes starting at SB[offset]

 2 n offset Clears n bytes starting at ST[offset]

 3 n offset Clears n bytes starting at DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Clears n bytes starting at LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Clears n bytes starting at DT[offset]

 6 n offset Clears n bytes starting at PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Clears n bytes starting at PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x16 0 TESTN n Compares the top n bytes of the stack with 0

 1 n offset Compares the top n bytes at SB[offset] with 0

 2 n offset Compares the top n bytes at ST[offset] with 0

 3 n offset Compares the top n bytes at DB[offset] with 0

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Compares the top n bytes at LB[offset] with 0

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Compares the top n bytes at DT[offset] with 0

 6 n offset Compares the top n bytes at PB[offset] with 0

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Compares the top n bytes at PT[offset] with 0

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x17 0 INCN n Increments the number at DT[-n] of length n bytes

 1 n offset Increments the number at SB[offset] of length n bytes.

 2 n offset Increments the number at ST[offset] of length n bytes.

 3 n offset Increments the number at DB[offset] of length n bytes.

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Increments the number at LB[offset] of length n bytes.

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Increments the number at DT[offset] of length n bytes.

 6 n offset Increments the number at PB[offset] of length n bytes.

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Increments the number at PT[offset] of length n bytes.

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x18 0 DECN n Decrements the number at DT[-n] of length n bytes

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

350 MULTOS is a registered trademark of MULTOS Limited.

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 1 n offset Decrements the number at SB[offset] of length n bytes.

 2 n offset Decrements the number at ST[offset] of length n bytes.

 3 n offset Decrements the number at DB[offset] of length n bytes.

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Decrements the number at LB[offset] of length n bytes.

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Decrements the number at DT[offset] of length n bytes.

 6 n offset Decrements the number at PB[offset] of length n bytes.

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Decrements the number at PT[offset] of length n bytes.

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x19 0 NOTN n Inverts the top n bytes of the stack.

 1 n offset Inverts n bytes stored at SB[offset]

 2 n offset Inverts n bytes stored at ST[offset]

 3 n offset Inverts n bytes stored at DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Inverts n bytes stored at LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Inverts n bytes stored at DT[offset]

 6 n offset Inverts n bytes stored at PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Inverts n bytes stored at PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x1A 0 CMPN n Compares top n bytes of stack with the bytes stored at DT[-
2*n]

 1 n offset Compares top n bytes of stack with the bytes stored at
SB[offset]

 2 n offset Compares top n bytes of stack with the bytes stored at
ST[offset]

 3 n offset Compares top n bytes of stack with the bytes stored at
DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Compares top n bytes of stack with the bytes stored at
LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Compares top n bytes of stack with the bytes stored at
DT[offset]

 6 n offset Compares top n bytes of stack with the bytes stored at
PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Compares top n bytes of stack with the bytes stored at
PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x1B 0 ADDN n Adds top n bytes of stack with bytes stored at DT[-2*n]

 1 n offset Adds top n bytes of stack to bytes stored at SB[offset]

 2 n offset Adds top n bytes of stack to bytes stored at ST[offset]

 3 n offset Adds top n bytes of stack to bytes stored at DB[offset]

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 351

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Adds top n bytes of stack to bytes stored at LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Adds top n bytes of stack to bytes stored at DT[offset]

 6 n offset Adds top n bytes of stack to bytes stored at PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Adds top n bytes of stack to bytes stored at PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x1C 0 SUBN n Subtracts top n bytes of stack with bytes stored at DT[-2*n]

 1 n offset Subtracts top n bytes of stack from bytes stored at
SB[offset]

 2 n offset Subtracts top n bytes of stack from bytes stored at
ST[offset]

 3 n offset Subtracts top n bytes of stack from bytes stored at
DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Subtracts top n bytes of stack from bytes stored at
LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Subtracts top n bytes of stack from bytes stored at
DT[offset]

 6 n offset Subtracts top n bytes of stack from bytes stored at
PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Subtracts top n bytes of stack from bytes stored at
PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x1D 0 ANDN n Logically ANDs top n bytes of stack with bytes stored at DT[-
2*n]

 1 n offset Logically ANDs top n bytes of stack with bytes stored at
SB[offset]

 2 n offset Logically ANDs top n bytes of stack with bytes stored at
ST[offset]

 3 n offset Logically ANDs top n bytes of stack with bytes stored at
DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Logically ANDs top n bytes of stack with bytes stored at
LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Logically ANDs top n bytes of stack with bytes stored at
DT[offset]

 6 n offset Logically ANDs top n bytes of stack with bytes stored at
PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Logically ANDs top n bytes of stack with bytes stored at
PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

352 MULTOS is a registered trademark of MULTOS Limited.

OpCode Tag Instruction b1 b2 b3 b4 Notes
 w1 w3
 w2

0x1E 0 ORN n Logically Ors top n bytes of stack with bytes stored at DT[-
2*n]

 1 n offset Logically Ors top n bytes of stack with bytes stored at
SB[offset]

 2 n offset Logically Ors top n bytes of stack with bytes stored at
ST[offset]

 3 n offset Logically Ors top n bytes of stack with bytes stored at
DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Logically Ors top n bytes of stack with bytes stored at
LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Logically Ors top n bytes of stack with bytes stored at
DT[offset]

 6 n offset Logically Ors top n bytes of stack with bytes stored at
PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Logically Ors top n bytes of stack with bytes stored at
PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

0x1F 0 XORN n Logically XORs top n bytes of stack with bytes stored at DT[-
2*n]

 1 n offset Logically XORs top n bytes of stack with bytes stored at
SB[offset]

 2 n offset Logically XORs top n bytes of stack with bytes stored at
ST[offset]

 3 n offset Logically XORs top n bytes of stack with bytes stored at
DB[offset]

 3 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 4 n offset Logically XORs top n bytes of stack with bytes stored at
LB[offset]

 4 b Compact version where n = 1, 2, 4 or 8 and
-32 <= offset <= 31.

 5 n offset Logically XORs top n bytes of stack with bytes stored at
DT[offset]

 6 n offset Logically XORs top n bytes of stack with bytes stored at
PB[offset]

 6 b Compact version where n = 1, 2, 4 or 8 and
0 <= offset <= 63.

 7 n offset Logically XORs top n bytes of stack with bytes stored at
PT[offset]

 7 b Compact version where n = 1, 2, 4 or 8 and
-64 <= offset <= -1.

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 353

Primtive Set Listing
MULTOS Primitives are divided into four sets: 0, 1, 2 and 3. These are based on the number of non-stack
argument bytes that are passed to a primitive. Please note that any number of values may be placed on
the stack for the primitive without it impacting on the Primitive Set designation. Within each set a hex
value is assigned to the primitive. This is used to uniquely identify that primitive within the set.

Set 0

Primitive Name Hex Value

Check Case 0x01

Reset WWT 0x02

Get Session Size 0x03

Update Session Size 0x04

Load CCR 0x05

Store CCR 0x06

Set ATR File Record 0x07

Set ATR Historical Characters 0x08

Get Memory Reliability 0x09

Lookup 0x0A

Memory Compare 0x0B

Memory Copy 0x0C

Query Interface Type 0x0D

Set ATS Historical Characters 0x0E

Memory Copy Non-Atomic 0x0F

Control Auto Reset WWT 0x10

Set FCI File Record 0x11

Set AFI 0x12

Card Unblock 0x13

Lookup Word 0x14

Get Configuration Data 0x15

Get Transaction State 0x16

Exit to MULTOS and Restart 0x17

Update Process Events 0x18

Memory Fill 0x19

Delegate 0x80

Reset Session Data 0x81

Checksum 0x82

Call Codelet 0x83

Query Codelet 0x84

Exchange Data 0x85

Query Channel 0x86

Get FCI State 0x87

Query Algorithm 0x8A

Platform Optimised Checksum 0x89

DES ECB Encipher 0xC1

Modular Multiplication 0xC2

Modular Reduction 0xC3

Get Random Number 0xC4

DES ECB Decipher 0xC5

Generate DES CBC Signature 0xC6

Generate Triple DES CBC Signature 0xC7

Modular Exponentiation / RSA Sign 0xC8

Modular Exponentiation CRT / RSA Sign CRT 0xC9

SHA-1 0xCA

GSM Authenticate 0xCB

Generate Random Prime 0xCC

SEED ECB Decipher 0xCD

SEED ECB Encipher 0xCE

Secure Hash 0xCF

ECC Addition 0xD0

ECC Convert Representation 0xD1

ECC Equality Test 0xD2

ECC Inverse 0xD3

ECC Scalar Multiplication 0xD4

MULTOS Developer’s Reference Manual

MAO-DOC-TEC-006 v1.60 © 2023 MULTOS Limited.

354 MULTOS is a registered trademark of MULTOS Limited.

AES Decipher 0xD6

AES Encipher 0xD7

Triple DES ECB Decipher 0xD8

Triple DES ECB Encipher 0xD9

Check BCD 0xDA

Get Replaced Application State 0xDB

Modular Exponentiation CRT Protected / RSA Sign CRT Protected 0xDC

Get AID 0xDD

Secure Hash IV 0xE4

Initialise PIN 0xE5

Read PIN 0xE6

Verify PIN 0xE7

Get Process Event 0xE8

Reject Process Event 0xE9

RSA Verify 0xEB

Flush Public 0xEC

Set 1

Primitive Name Hex Value

Query0 0x00

Query1 0x01

Query2 0x02

Query3 0x03

Update Static Size 0x04

Memory Compared Enhanced 0x05

Memory Copy From Replaced Application 0x06

Manage Stack 0x07

DivideN 0x08

Get DIR File Record 0x09

Get File Control Information 0x0A

Get Manufacturer Data 0x0B

Get MULTOS Data 0x0C

Get Purse Type 0x0D

Memory Copy Fixed Length 0x0E

Memory Compare Fixed Length 0x0F

MultiplyN 0x10

Add BCDN 0x11

Subtract BCDN 0x12

Memory Copy Non-Atomic Fixed Length 0x13

Convert BCD 0x14

Pad 0x15

Unpad 0x16

Get Available Interface Types 0x17

Control Atomic Writes 0x18

Set Transaction Protection 0x80

Get Delegator AID 0x81

Set PIN Data 0x85

Get PIN Data 0x86

Get Data 0x87

Generate Asymmetric Hash General 0xC4

Generate MAC 0xC6

Modular Inverse 0xD0

ECC Verify 0xD1

Configure Read Binary 0xDC

Memory Copy Additional Static 0xDD

Memory Fill Additional Static 0xDE

Get Static Size 0xDF

Generate Asymmetric Signature General 0xE1

Verify Asymmetric and Retrieve General 0xE2

Set Silent Mode 0xE3

Initialise PIN Extended 0xE4

ECC Generate Signature 0xE5

ECC Verify Signature 0xE6

ECC Generate Key Pair 0xE7

ECC Elliptic Curve Diffie Hellman 0xE8

ECC ECIES Decipher 0xE9

MDRM

© 2023 MULTOS Limited. MAO-DOC-TEC-006 v1.60

MULTOS is a registered trademark of MULTOS Limited. 355

ECC ECIES Encipher 0xEA

Set 2

Primitive Name Hex Value

Bit Manipulate Byte 0x01

Shift Left 0x02

Shift Right 0x03

SetSelectSW 0x04

CardBlock 0x05

SetContactlessSelectSW 0x06

Shift Rotate 0x07

Return From Codelet 0x80

Block Decipher 0xDA

Block Encipher 0xDB

Generate RSA Key Pair 0xE0

 Set 3

Primitive Name Hex Value

Bit Manipulate Word 0x01

Call Extension 0, 1, 2, 3, 4, 5, 6 0x8x, where x = extension value [0, 6]

0x86: The compiler uses a printf library and this library uses this
primitive to perform the actual printf operation. The printf
library calls the primitive with the three primitive parameters
set to zero and it also pushes a value of zero onto the stack
before calling the primitive. The simulator executes this
primitive, printing the printf message onto the output window.

----- End of Document -----

