

© 2021 MULTOS Limited.

MULTOS is a registered trademark of MULTOS Limited.

MDG

MAO-DOC-TEC-005 v1.43

MULTOS Developer's Guide

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

ii MULTOS is a registered trademark of MULTOS Limited.

Copyright

 Copyright 1999 – 2021 MULTOS Limited. This document contains confidential and proprietary

information. No part of this document may be reproduced, published or disclosed in whole or part, by

any means: mechanical, electronic, photocopying, recording or otherwise without the prior written

permission of MULTOS Limited.

Trademarks

MULTOS is a registered trademark of MULTOS Limited.

All other trademarks, trade names or company names referenced herein are used for identification

only and are the property of their respective owners

Published by

MULTOS Limited,

350 Longwater Avenue,

Reading,

Berkshire,

RG2 6GF,

UK.

General Enquiries

Email: dev.support@multos.com

Web: http://www.multos.com

http://www.multos.com/

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. iii

Document References

All references to other available documentation is followed by the document acronym in square

[] brackets. The 7816 documents are from the ISO / IEC and are available from local standards

agencies. [FIPS186] is available from the NIST web site. The latest versions of MULTOS documents

are always available from the MULTOS web site http://www.multos.com.

[7816-2] Information Technology – Identification cards – Integrated circuit(s) cards

and contacts – Part 2: Dimensions and location of the contacts

[7816-3] Information Technology – Identification cards – Integrated circuit(s) cards

with contacts – Part 3: Electronic signals and transmission protocols

[7816-4] Information Technology – Identification cards – Integrated circuit(s) cards

with contacts – Part 4: Interindustry commands for interchange

[7816-6] Information Technology – Identification cards – Integrated circuit(s) cards

with contacts – Part 6: Interindustry data elements

[FIPS186] FIPS PUB 186-2 Digital Signature Standard (DSS)

[GALU] mao-doc-ref-009 Guide to Generating Application Load Units

Available under the “MULTOS Application Developer Licence”. To

download visit http://www.multos.com

[GLDA] mao-doc-ref-008 Guide to Loading and Deleting Applications

Available under the “MULTOS Application Developer Licence”. To

download visit http://www.multos.com

[MDRM] mao-doc-ref-006 MULTOS Developer’s Reference Manual

Available under the “MULTOS Application Developer Licence”. To

download visit http://www.multos.com

[MIR] mao-doc-ref-010 MULTOS Implementation Reports

Available under the “MULTOS Application Developer Licence”. To

download visit http://www.multos.com

Data References

Any references to MULTOS data can be cross-referenced to the MULTOS Data Dictionary available in

the back of the MULTOS Developer’s Reference Manual [MDRM].

http://www.multostechnet.com/
http://www.multos.com/
http://www.multos.com/
http://www.multos.com/
http://www.multos.com/

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

iv MULTOS is a registered trademark of MULTOS Limited.

1 INTRODUCTION ... 1

1.1 Assumptions and Clarifications .. 1

2 SMART CARD CONCEPTS .. 2

2.1 Anatomy of a Smart Card ... 2

2.2 Single Application Smart Cards ... 3

2.3 Multi-Application Smart Cards .. 3

2.4 General Operating Environment .. 4

2.4.1 Card Applications .. 4

2.4.2 Interface Devices .. 4

3 SMART CARD COMMUNICATIONS ... 5

3.1 Answer-To-Reset ... 6

3.2 MULTOS and ATR ... 6

3.3 Application Protocol Data Unit and ISO Cases .. 7

3.4 Logical Channels ... 8

3.5 Secure Messaging ... 8

3.6 Data Structures ... 8

3.6.1 Elementary File Types ... 9

3.6.2 Transparent ... 9

3.6.3 Linear Variable ... 10

3.6.4 Cyclic ... 10

3.6.5 Elementary Files as Logical Constructs .. 10

3.7 MULTOS File Structure .. 11

3.7.1 The Master File .. 11

3.7.2 The Directory File ... 11

3.7.3 The Answer-To-Reset File ... 11

3.8 Data Referencing .. 12

3.8.1 Data Unit ... 12

3.8.2 Data Objects and Tag Length Value .. 12

3.8.3 Data Object Templates ... 13

4 WORKING WITH MULTOS CARDS .. 14

4.1 Working with Applications .. 14

4.2 MULTOS Applications as Dedicated Files .. 14

4.2.1 Application Selection and Application ID .. 14

4.2.2 MULTOS and Application Selection .. 15

4.2.3 File Control Information ... 15

4.2.4 Application Types and Permissions ... 16

4.3 Application Space in MULTOS ... 18

4.4 Chip Architecture .. 19

4.5 Modes of Operation: Standard, Shell, Default and Proprietary .. 20

4.5.1 Command Handling ... 21

4.6 Application Abstract Machine ... 21

4.6.1 Memory Layout .. 22

4.6.2 Tagged Addressing .. 22

4.6.3 Code Space ... 23

4.6.4 Data Space .. 24

4.6.5 Static Memory ... 24

4.6.6 Public Memory ... 26

4.6.7 Dynamic Memory ... 28

4.6.8 Condition Code Register .. 29

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. v

4.6.9 MULTOS Executable Language ... 31

4.7 Silent Mode .. 31

4.8 Process Events ... 32

4.8.1 Overview ... 32

4.8.2 Primitives ... 32

4.8.3 SELECT Processing ... 32

4.8.4 Event Processing .. 32

4.8.5 Event Rejection .. 33

4.8.6 Card Unblock Primitive ... 33

5 MULTOS APPLICATIONS .. 34

5.1 Language Definition .. 34

5.2 Application Session ... 35

5.3 Application Execution .. 36

5.3.1 Application State Prior to First Command Handling .. 36

5.3.2 Checking CLA and INS ... 36

5.3.3 Exiting an Application .. 40

5.3.4 MULTOS and GET RESPONSE ... 40

5.4 Basic Programming Techniques ... 41

5.4.1 Declaring Memory Usage ... 43

5.5 Reading and Writing Data ... 44

5.5.1 Reading from Transparent Files .. 44

5.5.2 Reading from Fixed Length Files ... 47

5.5.3 Writing Data to a Linear Fixed File .. 50

5.5.4 Reading from a Linear Variable File ... 50

5.5.5 Writing to a Linear Variable File .. 52

5.5.6 Reading from and Writing to Cyclic Fixed Files .. 53

5.6 Functions .. 55

5.6.1 Function Stack Usage ... 57

5.6.2 Variable Scope ... 60

5.6.3 PIN management ... 60

6 CODING EXAMPLES ... 62

6.1 Secure Messaging ... 62

6.1.1 Introduction ... 62

6.1.2 Approach and Code ... 62

6.1.3 Structures and Memory Usage ... 62

6.1.4 Checking Data and MAC Tag-Length ... 64

6.1.5 Building DES CBC Input ... 65

6.1.6 DES CBC Value Calculation and Verification ... 66

6.2 Checking Static Data Integrity ... 68

6.2.1 Introduction ... 68

6.2.2 Off Card Checksum Generator ... 68

6.2.3 Approach and Code ... 70

6.2.4 Memory and Constant Declaration ... 70

6.2.5 Checking Existing Checksum Values ... 71

6.2.6 Checksum and Transaction Protection .. 73

6.3 Delegation .. 73

6.3.1 Introduction ... 73

6.3.2 How Delegation Works .. 73

6.3.3 Approach and Code ... 74

6.3.4 PIN Check Application .. 75

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

vi MULTOS is a registered trademark of MULTOS Limited.

6.3.5 Delegating Application ... 75

6.4 Mutual Authentication .. 76

6.4.1 Introduction ... 76

6.4.2 Approach and Code ... 77

6.4.3 Memory Usage .. 77

6.4.4 Response to First Command ... 78

6.4.5 Response to Second Command .. 79

6.5 Digital Signature Generation ... 80

6.5.1 Introduction ... 80

6.5.2 Approach and Code ... 80

6.5.3 Memory Usage .. 80

6.5.4 Generating the Digital Signature .. 81

6.5.5 Verifying a Digital Signature ... 82

6.6 Simplified Miller-Rabin Probalistic Primality Test ... 82

6.6.1 Introduction ... 82

6.6.2 Approach and Code ... 83

6.6.3 Calculating w = 1 + 2
a
m .. 83

6.6.4 Generate Random b: 1 < b < w .. 85

6.6.5 Testing z = b
m
 mod w .. 85

6.7 A Note on Combining Techniques ... 88

6.8 Standard ASM Header File ... 89

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 1

1 Introduction

Developing applications for smart cards is a very different challenge to application development on a

traditional computing platform such as the PC or Server. This document provides an introduction to

the typical capabilities offered by smart cards, and then introduces the environment provided by the

MULTOS multi-application smart card operating system platform. An introduction to MULTOS

application development through illustrated examples should assist any experienced developer,

regardless of their platform experience, to make the transition to MULTOS.

This guide introduces general smart card concepts such as how smart cards communicate with their

environment and the way they store data. The architecture of a MULTOS smart card is then

introduced along with specific aspects of how MULTOS smart cards and applications behave. The

virtual machine’s assembly language structure and syntax, MULTOS Executable Language (MEL), is

explained and both MEL and higher level ‘C’ language examples of MULTOS applications are

presented. Finally, typical real-world smart card problems, such as calculating a digital signature, are

presented. These examples have worked code examples which demonstrate the use of MEL, ‘C’ and

the MULTOS API.

This document is aimed that experienced application developers with experience of basic Assembly

Language and ‘C’ experience. It does not attempt to teach application development from first

principles and does not explain concepts and terminology of these languages.

1.1 Assumptions and Clarifications

Throughout this document there are assumptions in force. They are:

 The cards in use are contact cards; i.e., contactless card issues are not addressed

 APDU command CLA, INS, P1, P2, Lc, Le and La all single byte values; i.e., extended messaging

not covered.

 The applications described are not shell applications

The transport protocols T = 0 and T = 1 as defined in [7816-3] are not covered in any detail because

there is little impact on how an application is developed.

The MULTOS Application Abstract Machine is “big-endian”. That is, multi-byte blocks are interpreted

as having their most significant byte held in the lowest segment address. For example, the value

0x1234 would be held in the following manner:

Address: 0000 0001

Byte Value: 12 34

Figure 1: Big-Endian Data Addressing

No formal explanations of the instructions and primitives are provided. Such information is available

in the MULTOS Developer’s Reference Manual [MDRM].

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

2 MULTOS is a registered trademark of MULTOS Limited.

2 Smart Card Concepts

Cards have been used for over a century as a way to permit people to use and pay for services, for

example as membership cards or transport tickets. However, it was not until the 1970s that the now

familiar ISO-standard format plastic card became widely used, primarily for use in credit card

payments. The over 30 years the plastic card has been enhanced by adding additional features to

provide ease of use and additional security mechanisms. Examples are the account and cardholder

information embossed into the plastic, the electronic information encoded on the magnetic stripe, the

special printing only visible under ultra-voilet light. Most of these enhancements are aimed at

ensuring that the card and the data it contains is genuine and can be trusted, however these physical

elements are easily overcome and increasingly counterfeit cards allow unauthorised access to services.

The combination of a plastic card and a silicon chip was introduced in the 1980s, and since then has

become the de-facto standard way of enhancing the plastic card in terms of ease of use or security,

being widely deployed in banking, mobile phones, identity and transport. These cards are known as

Integrated Circuit Cards (ICC or IC Card), Chip Cards or Smart Cards. This document will use the

term Smart Card. Most of these smart cards are single function cards, issued by a single organisation,

such as a bank or a mobile network operator. However, when multiple parties require access to the

single chip embedded into the plastic card, this so-called multiple application smart card becomes

more complex. Issues such as data security become much more important when these multiple

organisations have to share the chip’s capabilities. The MULTOS multi-application operating system

was designed to simplify some of these complexities and is implemented on many state-of-the-art

smart cards.

2.1 Anatomy of a Smart Card

Smart cards contain an embedded integrated circuit chip. The chip itself is not directly visible or

accessible on the card but is built into a “micro-module” consisting of a metal contact plate with thin

bonding-wires connecting the contact pads to the chip. The chip, contact plate and bonding wires

are mounted on a miniature circuit board giving a robust package that is subsequently glued into a

milled recess within the plastic card. The micro-modules are usually pre-manufactured and supplied

on a tape or film for subsequent embedding into the plastic card at a different facility. Some card

manufacturers take complete or sawn silicon wafers and construct the micro-module directly into the

milled recess of the plastic card, in a single manufacturing step.

The chip is a complete microprocessor computer in its own right. It has ROM containing the operating

system and also applications. It also has non-volatile memory for both application and data storage.

The non-volatile memory is usually EEPROM (or sometimes FRAM or Flash memory). There is also

dynamic RAM for data storage whilst the chip is powered on. The chip is supplied with low-voltage

power via the contact plate, which also provides the physical link to the serial communications

between the chip and the smart card reader or Interface Device (IFD). For more information see

[7816-2] and [7816-3].

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 3

The following diagram shows a schematic for a typical smart card.

Figure 2: Smart Card Manufacture

IC: Integrated Circuit

COB: Chip on Board

2.2 Single Application Smart Cards

There are smart cards that are designed to carry only a single application and these cards display

various levels of sophistication. The simplest can be considered memory cards. The more sophisticated

can perform the same sort of processing that a multi-application smart card can do.

A memory card is one where a limited instruction set allows static memory access. In most cases the

instructions set consists of read and write commands and may also include some security features

such a symmetric encryption. The instruction set, however, is not combined on the chip to create an

executable program, but rather each instruction has an external command that must be sent to the

chip. For example, the command READ BINARY simply instructs the chip to read a certain memory

area and return the results. Further such examples are found in [7816-4].

More complex single application cards do permit executable programs to reside on the chip, which

permits more data processing and more data security. So, these cards allow a series of instructions to

be combined into a function. In other words, the cards are programmable.

Single application cards successfully fulfil many smart card business cases. There are still some

drawbacks. Once a card is manufactured it is difficult, if not impossible, to change the application on

the chip. If a card issuer wished to offer several different applications to their cardholders, then a

cardholder could have to be issued with two or more cards. The resulting cost to issuers may prove to

be too high.

2.3 Multi-Application Smart Cards

Multi-application smart cards are programmable chip cards that allow multiple applications to be

loaded onto the chip. Each application can run independently on the chip. So, a single chip card can

be used to perform multiple and very different functions. It would be possible, for example, to have a

single smart card that could serve as ID, a payment card and a holder of health records. Each of the

application will have access to the necessary tools to cater for its own data security.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

4 MULTOS is a registered trademark of MULTOS Limited.

Applications can be loaded and deleted from multi-application cards. This greater freedom allows

cardholders and issuers to change the application mix on the chip during the normal lifetime of the

card. It can also extend the useful life of a card.

Finally, these cards have an operating system. An OS helps to create a known environment within

which applications operate. It also facilitates loading and deleting as well as other common operations.

Multi-application cards are not without their weak points. The cost of multi-application chip cards is

higher than other types. More flexibility brings complexity, which means that there is an initial

learning phase that may be longer than anticipated.

2.4 General Operating Environment

Smart cards are not stand-alone modules. A card on its own is simply a piece of plastic with a silicon

chip embedded in it. In order for the chip to function it needs a power source. Furthermore, an

application on a chip does not run on its own. It waits for data to be sent to it so that it can then

carry out its function.

2.4.1 Card Applications

In general, a smart card application is one that is able to receive and process commands. The

command processing can be simple or complex. The application should also be able to return data in

response to a command.

2.4.2 Interface Devices

In order to use a chip card some sort of reader is required. Readers can come in many shapes and

sizes from hand held devices to stand alone kiosks. The term used to indicate any of those is interface

device, also known as an IFD.

An IFD is more than a chip card reader. It must also be able to supply power the chip, transmit

commands and handle the chip application’s responses. It is the IFD initiates and directs the terminal –

application interaction. This is referred to as the command – response dialogue and is illustrated in

Figure 3: Command-Response Dialogue.

Figure 3: Command-Response Dialogue

The concept of command-response dialogue is very important. It is the basis of application

development.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 5

3 Smart Card Communications

The chip uses a set of six contacts for communication. Two contacts are used for power; one is used

for reset, one for a clock, one for ground and one for serial communications. All communication

between the chip and an IFD must pass through one communication contact. There are also two extra

contacts, which are reserved for future use.

Figure 4: Chip Card Contacts

In strict terms the reset and clock could be considered as communication. The clock is used to

regulate the speed of operation. The reset contact is present to allow an IFD to start or reinitiate

communications.

When a smart card is powered on, it replies to the IFD by sending a string of bytes referred to as the

Answer-To-Reset or ATR. The ATR is used by the smart card to inform the IFD of its electrical and

communication capabilities and to help the IFD to establish a commonly understood protocol for

further communications.

Once communication has been established based on the information contained in the ATR it is then

possible to send commands to the card. The command structure is defined in [7816-5] and is called

an Application Protocol Data Unit. They are more commonly referred to as APDU.

It is worth noting that an APDU is a logical view of the actual command being sent to the smart card.

An APDU needs to be transported from an IFD to chip and this done using electrical signals are

generated by the IFD and applied to the contacts on the smart card. These signals are called Transport

Protocol Data Units. However, an APDU is the same regardless of the protocol being used to actually

perform the communications and because of this an application developer usually need not worry

about the transport protocol in use.

As illustrated in Figure 3: Command-Response Dialogue, each command requires a response and it is

always the IFD that sends the command. This means that a smart card application needs to handle

incoming commands and respond to them. Furthermore, it implies that a smart card application is

either processing a command or waiting for a command. So, it is not possible to have an application

performing background tasks or schedule tasks.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

6 MULTOS is a registered trademark of MULTOS Limited.

With the introduction of ATR handling, we now have an expanded chip-IFD dialogue as illustrated in

Figure 5: ATR and Command-Response Dialogue.

Figure 5: ATR and Command-Response Dialogue

The next sections will look more closely at the ATR and APDU.

3.1 Answer-To-Reset

The ATR is a series of signals, which form bytes, that are sent out by the smart card when it is

powered up and reset for this first time, or subsequently reset. The term signal is used here to stress

that the actual protocol to be used is undefined at this point. There are a number of low level

handshaking steps that take place, during the power-up and ATR cycle, which will establish the

communication parameters to use. The document [7816-3] defines the Answer-To-Reset structure

and the interpretation of the values found in it. However, the general structure of an ATR is easy to

understand. It consists of two blocks of data: interface characters and the historical characters.

The interface characters are used to define the operational parameters for the smart card. Information

such as the transport protocols that are allowed, the voltage levels, the class of smart card and the

speed at which the clock frequency may be run are all indicated.

Historical characters consist of up to fifteen bytes of data that may be card or application specific and

are often used to convey simple information. For example, some electronic purses could use the

Historical Characters to convey the amount of value currently held on the card. This enables a simple

IFD to reset the card and display the value on the purse by reading the Historical Characters.

3.2 MULTOS and ATR

MULTOS supports dual ATR. The primary ATR is that returned when the chip first receives power. This

also referred to as a cold ATR. The secondary or warm ATR is returned when an explicit reset signal is

sent to the chip. Both ATR may be the same, but it is also possible to specify two different ATR. So,

for example, providing that the underlying chip and any terminal can support it, a single card could

have a primary ATR announcing a transport protocol of T = 0 and a secondary one announcing T = 1.

For further information on the nature of the communication protocols see [7816-3].

If an application has been given suitable access when loaded on to the card then it is able to update

either the primary ATR or secondary ATR historical characters, but not both. This permits an

application to provide and update information that an IFD will receive.

It is important to note that the ATR interface characters are set early in the life cycle of a MULTOS chip.

Once set they can not be changed.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 7

3.3 Application Protocol Data Unit and ISO Cases

As seen in Figure 3: Command-Response Dialogue a smart card application receives commands and

responds to them. The commands are held in an APDU structure and responses consist of various

known components.

An APDU command consists of a mandatory four-byte header followed by an optional body. That

structure is given in Figure 6: APDU Command Structure.

Figure 6: APDU Command Structure

The APDU command components are: class byte (CLA), instruction byte (INS), parameter byte 1 (P1),

parameter byte 2 (P2), length of command data to be sent (Lc), command data of length Lc and the

length of data expected to be returned after processing the command (Le).

Once an application has finished processing a command it needs to provide a response. What is

always returned is a two byte Status Word. The Status Word bytes are referred to as SW1 and SW2.

They indicate the result of processing the command and represent either a success code or an error

code. In some cases data may also be returned. This can be summarised as in Figure 7: APDU

Response.

Figure 7: APDU Response

If data is also returned, it is important that the actual length of the data returned is set. This is

referred to as the La value.

Some examples are given in Figure 8: Example Status Word Values. A complete listing of defined

Status Word values is given in [7816-4].

Status Word Meaning

90 00 Successful processing

61 xx Successful processing where xx bytes of unexpected data are

returned

6C xx Successful processing, but Le value and La value are different.

Send the command again with an Le value of xx.

6A 82 File not found

Figure 8: Example Status Word Values

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

8 MULTOS is a registered trademark of MULTOS Limited.

There are four possible ISO cases. They are summarised in Figure 9: ISO Cases.

Case APDU Command Response

1 CLA INS P1 P2 Status Word

2 CLA INS P1 P2 Le Status Word and data. La value set.

3 CLA INS P1 P2 Lc [data] Status Word

4 CLA INS P1 P2 Lc [data] Le Status Word and data. La value set.

Figure 9: ISO Cases

A Case 1 command could be one that resets an application counter. A Case 2 command might be

one that reads data from the card. A Case 3 command could be one that only writes data to the chip.

Finally, a Case 4 command might decrypt the incoming command data and return the value in plain

text.

3.4 Logical Channels

A logical channel is a link to a Dedicated File. A logical channel to one Dedicated File is independent

of a logical channel to another Dedicated File. In other words, using logical channels it is possible to

have multiple applications open on the smart card at any one point in time and for these applications

to run independently of each other.

Within ISO 7816 the class byte of the command APDU is used to specify the logical channel to send

the command to. When the highest nibble of the class byte is equal to 0,8,9 or A then the least

significant nibble of the class byte represents the secure messaging format and logical channel

number.

3.5 Secure Messaging

Secure Messaging is specified in [7816-4]. What it is intended to do is to afford data authentication

and data confidentiality to smart card applications. Authentication is guaranteed by using a checksum

or hash digest value calculated over the data. Confidentiality is guaranteed by using a suitable

cryptographic method to encrypt the data and / or digitally sign the authentication value.

MULTOS applications can fully support secure messaging by implementing data authentication or

data confidentiality on the command body of the message. The operating system provides security

functions that allow encryption and decryption of data using either symmetric or asymmetric methods.

Inter-Industry Smart Card Commands

The inter-industry commands given in [7816-4] are supported by MULTOS. They and other MULTOS

specific commands are explained in the [MDRM].

3.6 Data Structures

The following discussion is based on [7816-4]. It has been included to introduce data structures.

File Structure

Undifferentiated blocks of data can be useful. It is, however, even more useful when it has some sort

of structure. Now, the manner in which the files are organised is dependent upon the standard that

the smart card uses. The single most important standard for smart cards is [7816-4]. This document

addresses the logical organisation of the smart card. In particular it defines several different file types.

Memory is viewed as a file structure. Figure 10: ISO File Structure illustrates that view.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 9

Figure 10: ISO File Structure

 The Master File, represented by MF, is the root file on the smart card. This is the highest level

file within which all other files are deemed to reside.

 Elementary Files, represented by EF, are data files. These files come in a number of different

varieties and are discussed later in this section. Elementary Files serve one purpose and that is

to hold data. The Elementary Files cannot have child files within them.

 Dedicated Files, represented by DF, serve as both executable applications and as directories.

Within [7816-4] there is little differentiation between a DF as a directory and as an application.

Logically there may be files held within the Dedicated File, but these files are considered to be

embedded within the Dedicated File rather than just belonging in the directory. Dedicated File

may hold other Dedicated Files as well as Elementary Files.

ISO 7816 does not specifically state that Dedicated Files contain executable code. In reality there does

not have to be a command that executes a Dedicated File. Instead, [7816-4] defines a number of

commands. The details of the implementation of them on the card are not specified.

3.6.1 Elementary File Types

An Elementary File is one that contains data. There are several different ways that data could be held

and so [7816-4] defines several different varieties of Elementary File.

The different types are shown in Figure 11: ISO Elementary File Types.

Figure 11: ISO Elementary File Types

3.6.2 Transparent

A transparent file is a block of continuous bytes of data. Elementary Files with a transparent file

structure may be accessed using the Read Binary command as defined by [7816-4].

Fixed Length

A fixed length file structure is one where the file is divided into a number of records with each record

having a fixed length. To access data a record needs to be located and either the whole record or a

subset of it is extracted.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

10 MULTOS is a registered trademark of MULTOS Limited.

3.6.3 Linear Variable

In this case a data is held in records of different lengths. The data structure may be part of the linear

variable data itself. An example would a Tag-Length-Value or TLV structure, which is explained in

more detail later. It may also be the case that the records hold data that the program uses and as

such would not benefit from an explicit structure.

3.6.4 Cyclic

Cyclic files are similar to fixed length files in that the data is organised into a number of fixed length

records. The difference lies in the way in which the records are accessed, in a cyclic file the first record

is repeated once the end record is passed. For example, writing to a cyclic file causes existing records

to be overwritten once the end of the file is reached. A ‘ten record’ cyclic file can only hold copies of

the last ten records written.

3.6.5 Elementary Files as Logical Constructs

It is worth noting at this point that elementary files are logical constructs. It is possible to write an

application that has a single data area where data is held in ways that can be interpreted as

transparent, fixed length and linear variable without using an explicit file structure. It is equally

possible to have an application that uses an explicit file structure.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 11

3.7 MULTOS File Structure

The MULTOS file structure is a subset of the file structure defined by ISO 7816. The key difference is

that MULTOS does not provide a full hierarchical file structure on the card. An application can,

however, implement its own file structure.

Figure 12: MULTOS File Structure shows how a MULTOS Card's file structure appears.

Figure 12: MULTOS File Structure

The other files found are the Master File, the Directory File and the Answer-to-Reset File, which are

covered in the following subsection.

3.7.1 The Master File

The Master File is the root directory.

3.7.2 The Directory File

The Directory File, as called the DIR, is an Elementary File defined in [7816-4] and maintained by

MULTOS. It is a variable length EF that can hold information on the applications that have been

loaded onto the MULTOS Card.

Each application loaded onto the MULTOS card may have an entry in the DIR file. The entry is created

by the application provider and is usually stored in an [7816-4] defined TLV structure. These records

are ordered in the same sequence as the applications are loaded.

The fact that DIR records have a defined structure permits IFD and other applications to read and to

parse them. So, for example, an IFD can verify that a particular application is available by reading the

DIR records assuming that the application does have a DIR record. If the required records are found,

then the IFD could display application names for cardholder selection.

3.7.3 The Answer-To-Reset File

The Answer-To-Reset File, also called the ATR File, is maintained by MULTOS and each application

may place an entry in the file. It is a variable length EF that can hold information related to the chip

Answer-To-Reset.

Contrary to the name, the ATR File is not used directly to generate the Answer-To-Reset. An Answer-

To-Reset has historical bytes, but there are only 15 bytes available for use. If more than 15 were

required, they would be placed in the ATR File.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

12 MULTOS is a registered trademark of MULTOS Limited.

3.8 Data Referencing

All Elementary Files must provide some mechanism for the data within the file to be accessed or

updated. In [7816-4] this is referred to as Data Referencing. ISO 7816 defines three types of data that

may be referenced. They are a data unit, a record and a data object.

3.8.1 Data Unit

A data unit is the smallest unit of data that may be referenced and Data Unit referencing simply uses

an offset and length in data units to refer to one or more data units. Commonly this is a single byte.

Record

Record Files organised into data records may be accessed using the record number of the data

required. Records may be fixed length or variable length. If a length is used then the data returned

always starts at the beginning of the record. It is not possible to directly read an arbitrary part of a

record.

3.8.2 Data Objects and Tag Length Value

A data object uses tags to reference a specific piece of data. The tag identifies the data. The length

defines the amount of data available. Smart cards make use of Tag Length Value structures, also

known as TLV, to store data. The following explanation is based on [7816-6].

The value component of a TLV structure is also referred to as a data element. Also a data element

when coupled with its corresponding tag and length components is known as a data object. Data

objects can be presented either in a single TLV or a series of them can be presented in a nested TLV

structure. The first is known as a primitive data object and the second is a constructed data object.

The tag value can be one or two bytes in length. The two most significant bits indicates the class of

the data object. The next most significant bit indicates whether the data object is primitive or

constructed. The remaining five bits are either the tag number or an indication that a second byte is

used.

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 0 Undefined in [7816-6]

0 1 Application class

1 0 Context dependent class

1 1 Undefined in [7816-6]

 0 Primitive data object

 1 Constructed data object

 1 1 1 1 1 Second byte used for tag

number

 x x x x x Tag number from 0 to 30

inclusive

Figure 13: ISO 7816-6 Tag Decoding

If a tag uses second byte, it can only hold values from 31 to 127 inclusive.

The length value can be expressed in one, two or three bytes. The rules for how to express the length

are given in Figure 14: ISO 7816-6 Length Encoding.

Byte 1 Byte 2 Byte 3 Meaning

0x00 to - - Length from 0 to 127 bytes

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 13

0x7F

0x81 0x80 to

0xFE

- Length from 128 to 255 bytes

0x82 MS byte LS byte Length from 256 to 65535 bytes

Figure 14: ISO 7816-6 Length Encoding

So, if a value had a length of 10 bytes, the length would be expressed in a single byte of 0x0A. If the

length were 145 bytes, it would be expressed in two bytes of 0x8191. Finally, if the length were

62341 bytes, it would be expressed in three bytes as 0x82F385.

To continue with a data object example, the data object given by the hexadecimal string “50 0A 4D

55 4C 54 4F 53 20 41 70 70” is interpreted as a primitive data object that holds an application label

with a length of 10 bytes and that reads “MULTOS App”. More specifically, the tag 0x50 is for an

application label as per [7816-6]. The length of the data element is 0x0A or 10 decimal bytes. The

value is hexadecimal encoded ASCII. So, 0x4D, which is 77 decimal, is the ASCII code for the

character M.

As another example, the data object given by the hexadecimal string “5F 24 03 03 03 31” is

interpreted as an expiration date of 31 March 2003. Here the tag 0x5F24 is for the expiration date of

an application. Note that the binary representation of the first byte is 0101 1111, which means, as

per Figure 13: ISO 7816-6 Tag Decoding, that it is a primitive data object of the application specific

class and that the tag number is 0x24 or 36.

3.8.3 Data Object Templates

A primitive data object conveys a single piece of information. This may be all that is required in some

cases, but oftentimes several pieces of related information are required. In order to provide this type

of information templates, also referred to as constructed data objects, are available. These consist of a

series of embedded primitive data objects wrapped in a constructed data object tag. A single example

will serve as clarification.

The first example template will be that of the Directory File. This template is defined in [7816-5]. In

this example the DIR has the hexadecimal string

61 13 4F 05 F0 00 00 01 03 50 0A 4D 55 4C 54 4F 53 20 41 70 70

The break down of this is given in Figure 15: DIR Entry Example Decoded.

Hexadecimal String Meaning

61 Application template: constructed data object of the

application specific class

13 Total length of all following data (19 bytes)

4F Primitive data object tag for the Application ID. Note that it is

only byte in length because b5 is not set.

05 Length of Application ID

F0 00 00 01 03 Application ID data element

50 Primitive data object tag for application label

0A Length of application label (10 bytes)

4D 55 4C 54 4F 53 20 41 70 70 Application label that reads “MULTOS App”

Figure 15: DIR Entry Example Decoded

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

14 MULTOS is a registered trademark of MULTOS Limited.

4 Working with MULTOS Cards

The chapter Smart Card provided a general introduction to smart cards and also afforded some

MULTOS specific information. The objective of this chapter is to present enough information about

MULTOS chips so that a developer will have good understanding of them. This is important because it

gives a developer a better understanding of how programming instructions are implemented as well

as providing some insight into how to make the best use of MULTOS smart card features.

4.1 Working with Applications

This section addresses some topics concerning applications. Two of the topics, application selection

and file control information, are general. The rest provide MULTOS specific information.

4.2 MULTOS Applications as Dedicated Files

Figure 10: ISO File Structure shows that a smart card can be considered to consist of a series of files.

Now, the definition of an Elementary File (EF) clearly states that it is meant to hold data. Dedicated

Files (DF), on the other hand, can hold other DF and / or EF. This structure provides a good conceptual

model of smart card static memory. It does not, however, give a clear indication of where application

executable code is to be stored.

As shown in Figure 12: MULTOS File Structure the operating system considers top level dedicated files

as applications. What this means is that MULTOS treats the loading of an application as the creation

of a new dedicated file. So, an application can be selected as described in the section MULTOS and

Application Selection and application specific commands can then be sent to it. For a general view of

a MULTOS application see Figure 17: Application Space in MULTOS.

4.2.1 Application Selection and Application ID

A multi-application card will have more than one application per card. So, a method was required to

indicate to which application a command is sent. The method is application selection, which is done

by transmitting a SELECT FILE command as defined in [7816-4].

The key bit of information sent as command data in the SELECT FILE command is the Application ID,

also known as the AID. This ID with a length between 1 and 16 bytes inclusive is unique on the card

and may be proprietary or ISO registered as per [7816-5]. Please note that both parameter bytes are

used to indicate if FCI should be returned.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 15

4.2.2 MULTOS and Application Selection

MULTOS Supports the P1 P2 values given in Figure 16: MULTOS File Selection P1 P2 Values. In all the

cases below the CLA byte has a value of 0x00 and the INS bye one of 0xA4.

P1 P2 Lc Cmd DAta Selects If file exists, returns

00 00 None none Master File Success: 90 00

00 00 02 3F 00 Master File Success: 90 00

00 00 02 2F 00 Directory File Success: 90 00

00 00 02 2F 01 ATR File Success: 90 00

00 0C 02 2F 00 Directory File Success: 90 00

00 0C 02 2F 01 ATR File Success: 90 00

04 00 [01,10] AID Application (DF) Application Success and FCI

04 02 [01,10] AID Application (DF) Application Success and FCI

04 0C [01,10] AID Application (DF) Application Success

08 00 02 3F 00 Master File Success: 90 00

08 00 02 2F 00 Directory File Success: 90 00

08 0C 02 3F 00 Master File Success: 90 00

08 0C 02 2F 00 Directory File Success: 90 00

Figure 16: MULTOS File Selection P1 P2 Values

In order to understand fully the P1 P2 table, it is useful to take into account the following points:

 All values for P1, P2, Lc and command data are hexadecimal

 When a file does not exist the error returned is “File not found” (6A 82). However the

application selection process will operate over all of the loaded applications and not just the

first application that has an AID that (partially) matches the AID in the SELECT command. The

command will reply with “file not found” only if there are no loaded applications that have an

AID that (partially) matches and which are permitted over the selected interface.

 Any other combination of P1 P2 and Lc may be used. However, the operating system will

attempt to route this to an application. If an application was not successfully selected

beforehand, an ISO defined error will be returned.

 If the application has the “Process Events” permission, MULTOS does not test the most

significant 6 bits of P2. The processing of the least significant 2 bits of P2 remain unchanged.

For more information see 4.8

 The Lc when selecting a file using the AID can be between 1 and 16 bytes inclusive

 MULTOS supports application selection by partial AID. So, where the Lc value is indicated as

AID it is possible to use only part of the full AID value.

 The term “Application Success” is used to indicate that it is possible for applications to set the

status word returned upon successful selection. If, as is usually the case, the application has

not set a different status word, the success value is 90 00.

 Only applications can have FCI

 An application does not have to have FCI

4.2.3 File Control Information

As seen in Figure 16: MULTOS File Selection P1 P2 Values File Control Information or FCI can be

returned in response to a SELECT FILE command. FCI can consist of a number of data objects and is

intended to allow an IFD to examine the characteristics of the selected file. So, an FCI entry could

consist of a tag header list as defined in [7816-6], which communicates what tags are used by the

application. This would allow an IFD to process tho4.8se values and determine, for example, if the

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

16 MULTOS is a registered trademark of MULTOS Limited.

application indicates a preferred language. If so, the IFD could request the language preference value

and display its messages in that language.

4.2.3.1 Dual FCI

As of MULTOS 4.3, an application may return a different FCI value depending on whether it is

selected via the contact or contactless interface. In order to do this, the FCI data should be formatted

as contact_fci | contactless_fci.

For example:

#pragma attribute("fci", "0B6F095007434f4e544143540F6F0D500B434f4e544143544c455353")

The fact that an application has dual FCI values is indicated in file_mode_type byte of the ALC (see

[GLDA] – Acquire Application Load Certificate).

4.2.4 Application Types and Permissions

The following bitmapped fields are used in Application Load Certificates (see [GLDA]) and control how

an application behaves. Developers need to take these settings into account when writing

applications. The development tools provide different ways for setting these values either through

compiler #pragmas in the source code, on the command line (SmartDeck) or in user interface

dialogues (MUtil).

4.2.4.1 File Mode Type

This one byte bitmapped field describes the application.

b7 b6 b5 b4 b3 b2 b1 b0 file_mode_type – Dual FCI bit

 0 Single FCI application

 1 Dual FCI application

b7 b6 b5 b4 b3 b2 b1 b0 Meaning (MULTOS 4.2.1 and earlier)

0 0 0 0 0 0 0 0 Standard application (0x00)

0 1 0 1 1 0 1 0 Shell application (0x5A)

1 0 1 0 0 1 0 1 Default application (0xA5)

b7 b6 b5 b4 b3 b2 b1 b0 Meaning (MULTOS 4.3 and later)

 0 Single FCI application

 1 Dual FCI application

 0 0 Static memory size given in bytes

 0 1 Static memory size given in 255-byte blocks

 1 0 Static memory size given in bytes

 1 1 Static memory size given in bytes

 0 0 Standard application

 0 1 Default application

 1 0 Shell application

 1 1 Proprietary application type

 0 Standard application loading

 1 Controls the loading of the application in some

proprietary implementation-specific way.

0 0 Fixed

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 17

4.2.4.2 Access List:

The bits in this two byte value define the application’s permissions and have the following

meaning (set to 1 when the application has that permission).

o bit0 - Strong Cryptographic functions

o bit1 - Contact IFD interface

o bit2 - Contactless PCD interface

o bit3 - GSM Authenticate

o bit4 - Card Block

o bit5 - Card Unblock

o bit6 - Retain session data

o bit7 - Maintain selection

o bit8 – PIN Access Level } 00 = Application, 01 = Global / Basic

o bit9 – PIN Access Level } 10 = Global / Write, 11 = Global / Full

o bit10 – Process Events permission

o bit11 – Card Manager application

o bit12 – Allow access to peripheral devices

o bits13 to 15 – RFU

 app_ATR_type

A 1 byte value that indicates whether the application wishes to contribute to the historical bytes of

the primary or alternative ATR and the ATS

o None = 0x00,

o Primary ATR = 0x41,

o Secondary ATR = 0x42,

o Both ATRs = 0x43,

o Primary ATS = 0x44,

o Primary ATR and ATS = 0x45,

o Secondary ATR and ATS = 0x46,

o Both ATRs and ATSs = 0x47

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

18 MULTOS is a registered trademark of MULTOS Limited.

4.3 Application Space in MULTOS

Before embarking on discussions about MULTOS chip architecture and the Application Abstract

Machine, it is worthwhile to clarify what is meant be the term “MULTOS application”. Figure 17:

Application Space in MULTOS gives a schematic view of a loaded MULTOS application.

Code

Data

Session

EEPROM

RAM

Firewall

Application

Figure 17: Application Space in MULTOS

An application has its own application space, which consists of:

 Code: resides in the static memory area and is the executable code. The code area can not be

read nor written to.

 Data: resides in the static memory area and is the local data that the application requires to

carry out its function. Data can be read and written, but not executed.

 Session Data: permanently occupies space in the RAM based stack. An example of the use of

session data would be PIN check flag. Session data can be read and written.

All of these components exist within an OS enforced firewall. More details of these areas will be

discussed later in the document.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 19

4.4 Chip Architecture

A schematic representation of a MULTOS chip is given in Figure 18: MULTOS Chip Architecture.

Silicon (Hardware)

MULTOS

Operating System

AAM

Operating System

MEL Application

Application Load Certificates

Firewalls

MEL API

Application Abstract Machine

Silicon Hardware

Figure 18: MULTOS Chip Architecture

The components are:

 Silicon Hardware: The underlying hardware is the physical platform that supports the OS

functions. Those functions are written in native code, but are accessed via a fully specified

virtual machine, which is the same no matter the hardware used.

 Operating System: The operating system provides the underlying communications, memory

management and virtual machine. It also handles the loading and deleting of Applications,

application selection and the handling of APDU commands and responses.

 Application Abstract Machine: The AAM provides a standard API consisting of a set of

instructions and in built functions, called primitives.

 MEL API: this provides support for MULTOS Assembly Language code. There will be some

examples of this in the document. It is also possible to use C or Java to write MULTOS

applications.

 Application Load Certificates: this has been included to indicate that a digitally signed

certificate is required to load an application on to a MULTOS card. The certificate once used is

discarded. For more information on loading and deleting information see [GLDA].

 Applications and Firewalls: see Figure 17: Application Space in MULTOS for a description.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

20 MULTOS is a registered trademark of MULTOS Limited.

4.5 Modes of Operation: Standard, Shell, Default and Proprietary

Applications on MULTOS cards need to be able to work in a variety of environments. There are

different operational modes intended to facilitate this.

The standard mode corresponds to the general concept of multi-application smart cards. There are

applications on the card and in order to use one it must be selected. Once that application is no

longer required, another application can be selected and commands sent to it.

The assumption made when using standard mode is that the existing external infrastructure is able to

work with multi-application smart cards. In some cases this assumption does not hold. In order to

permit MULTOS applications to work in this type of environment it is possible to use shell mode. The

shell application, then, serves as the sole interface between any IFD and any other applications on the

card. This means that there is no need to select the shell application for it to be ready to process

commands and also that it is not possible to directly select any other application. So, the shell

application must be able not only to process commands destined for it, but also must be able to route

commands to the relevant applications that are also on the chip.

Default mode is similar to shell mode in that the default application is immediately available to receive

commands. However, it is still possible to use SELECT FILE as in standard mode. For example, a SIM

phone application could be on chip along with, say, a payment application. In this case it would make

sense for the phone application to be a default application because in that way it would be able to

process incoming phone calls immediately. If, however, the payment application was required, a

SELECT FILE command could be used and MULTOS, not the phone application, would handle it

normally.

Proprietary mode (an optional feature from MULTOS 4.5.1) allows implementers to create other types

of applications for specific purposes on a particular MULTOS product range.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 21

4.5.1 Command Handling

One of the key functions of the OS is to APDU command routing. Without this function an

application could not be selected nor commands sent to it.

Figure 19: Command Routing

The different modes of operation have been explained in Section 4.5. There are still some points to

clarify with respect to Figure 19: Command Routing. They are:

Only the OS can process an MSM command. These commands include all of the commands used for

loading an application, deleting an application or enabling a card.

The third step “Can OS process the command?” is best illustrated by the SELECT FILE command. So, if

a select command is sent the OS will check to see if there is an existing application with the ID given

and, if so, will select the file indicated.

The implication of the previous point is that a shell application will have to handle all command

routing because it receives all incoming commands.

4.6 Application Abstract Machine

Applications on MULTOS cards are executed using a virtual machine and this is referred to as the

Application Abstract Machine (AAM). The AAM is a zero-address stack machine that implements an

instruction set known as MULTOS Executable Language (MEL).

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

22 MULTOS is a registered trademark of MULTOS Limited.

4.6.1 Memory Layout

The MULTOS Application Abstract Machine (AAM) provides each application with its own memory

space. So, the memory map for one application is organised in the same manner as any other. Figure

20: MULTOS Memory Layout shows the relationship between the physical memory present on a

MULTOS Card and the memory seen by an application.

Figure 20: MULTOS Memory Layout

The application space is protected by a very strong firewall. This means that one application can not

access the space of any other application nor have its space accessed. Please note that within an

application the code space and data space are handled independently of each other. Code is executed

while data is manipulated.

It is worth noting that MULTOS Registers are not used in the same way as those in many machine

languages. MULTOS registers are not used to point to specific memory locations, but rather they point

to areas within the memory space and tagged addressing is then used to access a specific location.

4.6.2 Tagged Addressing

Memory spaces are always relative to the running application. This means that the location of data

can not be fixed by an absolute address. As applications need a method to refer to data within these

areas MULTOS provides tagged addressing. Tagged Addressing consists of a register and offset.

Figure 20: MULTOS Memory Layout introduces the memory area offset registers.

The registers are maintained by MULTOS and each is fixed to point to the bottom or top byte of each

memory area. An offset is provided by the application developer and refers to a relative address

within the memory area. For example, to refer to a byte that is 12 bytes from the top of the Public

memory area the expression PT[-12] is used. So, as another example, the first byte of data starting at

the bottom of the static data area is referred to as SB[0].

The location of data is sometimes referred to as its segment address. The OS derives a segment

address from a tagged address. This is because a tagged address can be mapped to a sixteen-bit

virtual address, which is referred to as a segment address.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 23

Here it is worth noting that the actual type, location and size of the different memory segments will

vary from one chip type to another. Also, the segment address of each area within the data space

may vary between applications and successive sessions. However, data within each area are

contiguous, which means that successive segment addresses represent adjacent bytes. Tagged

addressing allows the OS to dynamically map to the correct segment address at run time. This ensures

that any application written is not specific to a particular chip.

4.6.3 Code Space

Figure 21: Application Code Space

Code Space refers to the memory space occupied by the application’s code, which can not be

accessed to read or write, but rather can only be interpreted by the AAM. Physically the code space is

a block of memory that consists of up to 64K bytes of contiguous, non-volatile memory.

Segment addresses within the code space are always relative to the application. So, the starting offset

is always zero and, furthermore, application execution always starts from the first byte. Now, when an

instruction is being executed the Code Pointer register contains the code address of the next

instruction to be executed. The value that is held in this register is affected when using program flow

instructions such as Jump, Branch, Call and Return instructions. However, the code pointer value is

not available for manipulation by an application.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

24 MULTOS is a registered trademark of MULTOS Limited.

4.6.4 Data Space

Figure 22: Application Data Space

Data Space contains all of the data that is addressable by the application and consists of three distinct

memory areas. Those areas are non-volatile Static memory, RAM based Public memory and RAM

based Dynamic data. The latter can be composed of application specific session data and the stack.

Data Space can be no more than 64K in size and is addressed from 0 using tagged addresses. Details

of the memory areas and the registers used are found in the next sections.

4.6.5 Static Memory

Static data is the non-volatile memory of the MULTOS Card. Static memory is private to the

application and cannot be accessed by the terminal or other applications. The registers used to

address data within the static memory area are Static Top, ST, and Static Bottom, SB. The first takes as

its starting point the last byte held in static memory and refers to it as ST[-1]. The next to last byte of

static memory would be ST[-2]. On the other hand, Static Bottom begins with the first byte of static

data and refers to it as SB[0]. The second byte would, of course, by referred to as SB[1]. This way of

addressing bytes is the same for all applications, which means that all applications have a starting

static memory address of SB[0].

It is important to avoid corrupting static memory. There is a limited amount of space for applications

and corrupted memory can render an application useless. There are two OS supplied mechanisms that

eliminate this problem: data item protection and transaction protection.

Data Item Protection is always used. MULTOS guarantees that in executing an instruction that writes

data to static memory it will either be completely updated or not updated at all. More specifically, this

means that static memory will not be corrupted because no incomplete write will take place. In the

case of existing, page based EEPROM memory this guarantee holds even if a data item spans page

boundaries and, moreover, other items on the same page will not be corrupted.

Transaction Protection is controlled using the Set Transaction Protection primitive and specific

information on the primitive can be found in the [MDRM]. This is an OS supplied mechanism for

caching a number of writes to memory. They can then be committed or discarded. MULTOS

guarantees that once a commit has started then all affected writes are all made. This behaviour holds

even if there is a loss of power during the writing of the data.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 25

Transaction Protection does raise the issue of data visibility. In some cases, the data in static is not

updated until the entire transaction is completed. For example, the pseudo-code in Figure 23:

Transaction Protection Data Visibility may result in the value held at SB[0] being 4 or 5.

SB[0] = 3

Transaction Protection ON

ADDB 1 to SB[0]

ADDB 1 to SB[0]

Transaction Protection OFF and COMMIT

Figure 23: Transaction Protection Data Visibility

The resulting value held at SB[0] depends on how Transaction Protection is implemented by the

hardware. It is, therefore, best practice to avoid accessing data that is to be updated using

Transaction Protection.

There is one exception to the data visibility example discussed. If the MULTOS primitive Checksum is

used on static memory area, it always includes any updates, committed or not, as input. So, in the

case where transaction protection and checksum are used in conjunction it is important to keep this

in mind.

4.6.5.1 Additional Static Memory

Assuming sufficient EEPROM is available, the amount of static memory available to an application is

limited by the maximum value of ST for an implementation, STmax (usually 32K bytes). In some

applications it may be necessary to have more static memory than that. There are two ways of

achieving this:

Specify more data in the Open MEL Application command than is in the ALU.

This is usually done by increasing the static data size field in the ALC. After loading the data from the

ALU, “spare” static data space is available at the end of the static memory area within the ALU. Using

this method, the additional static data has to be personalised after application loading.

MUtil and SmartDeck (hdb/hsim) support the creation of additional static for test cards and

debugging. With live cards, you must add the extra size to the application registration details in

StepXpress.

Manually modify an ALU after compilation to increase the data size.

In a hex editor, update the data size field and insert extra bytes at the end of the existing data. This is

the way you would do this if you wanted to create an application template and be able to personalise

the additional static data BEFORE loading. Note that if the total data size exceeds 65535 bytes you

need to specify the size in 255 byte blocks and set the appropriate bit in the ALC.

In both cases, to address the static memory above STmax from an application you must use the

primitives Memory Copy Additional Static and Memory Fill Additional Static. The total amount of static

memory available can be obtained by using the Get Static Size primitive.

Note that if you declare more than STmax number of static bytes in your application you have no way

of knowing which variables will be allocated below STmax, above STmax or indeed straggling STmax. To

warn of this situation, the SmartDeck linker outputs a warning if the static data size exceeds 32K.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

26 MULTOS is a registered trademark of MULTOS Limited.

4.6.6 Public Memory

The Public memory area is the RAM resident input / output buffer for applications. Incoming APDU

are held in Public and any outgoing status word, La and data are placed here. This buffer is also used

to pass information from one application to another when delegation is used. As an I/O buffer it is

visible to IFD.

The registers used to address this area are Public Top, PT, and Public Bottom, PB. The byte at the top

of the public area is referred to as PT[-1] and each preceding byte has a sequential negative offset.

When starting from the bottom of the memory area, the first byte is referred to as PB[0] and each

successive byte has a positive sequential offset.

During the command-response dialogue MULTOS passes an APDU to an application the APDU is

written into Public memory. The APDU Header appears at the top of Public, and command data

appears at the bottom of public. When a MULTOS Application wishes to pass a response back to the

terminal then the response APDU is written into Public and MULTOS sends the response to the

terminal. Note that from MULTOS 4.3.2 onwards it is possible to return data that is larger than the

size of Public by using the Flush Public primitive (if supported).

MULTOS guarantees that data in Public remains private to the application until it exits or delegates to

another application. So, public may be used as temporary workspace. MULTOS will automatically

clean up the public area if the application terminates abnormally, but will not do so otherwise. This

means that any data held in Public that an application does not wish to reveal after exiting should be

explicitly erased.

When an application stops processing normally Public is made available as follows:

 If an application exits and has not been delegated to, then the Status Word, La value and La

number of bytes of response data becomes available to the terminal.

 If an application exits and has been delegated to, the whole of public becomes available to the

application that performed the delegation operation.

 If an application delegates to another, then the whole of public becomes available to the

application that has been delegated to. This allows data or commands to be passed to a

delegate application.

In order to carry out the functions given above, the AAM has a map of the Public memory area. It is

given in Figure 24: MULTOS Public Memory Data Map.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 27

Address Name Description

PT[-1] SW2 Byte 2 of the Status Word

PT[-2] SW1 Byte 1 of the Status Word

PT[-4] La Actual length of response data

PT[-6] Le APDU expected length of response data

PT[-8] Lc APDU length of command data sent

PT[-9] P3 If required, temporary buffer for 5th byte, if any, of APDU header

PT[-10] P2 APDU Parameter byte 2

PT[-11] P1 APDU Parameter byte 1

PT[-12] INS APDU Instruction byte

PT[-13] CLA APDU Class byte

PT[-14] GetResponseSW1 Byte 1 of Status Word to be used in Get Response command

PT[-15] GetResponseCLA CLA to be used by Get Response command

PT[-16] Protocol Type Transport protocol type

PT[-17] Protocol Flags Bit flags indicating status of protocol values

PB[0] Start of Data Area Command data and response data start

Figure 24: MULTOS Public Memory Data Map

There are still some points of clarification required as to the nature of Public memory. The first thing

to note is that command data is always placed at PB[0] and any response data is sent starting from

PB[0]. The latter part of the first point is particularly important because an application could, for

example, write response data starting at PB[10] as this is a valid tagged address. To continue the

example, if the response data was 8 bytes, then MULTOS will transmit the 8 bytes starting at PB[0]

and no part of the data placed in Public by the application will be transmitted.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

28 MULTOS is a registered trademark of MULTOS Limited.

The second point of note is that GetResponseSW1, GetResponseCLA, Protocol Type and Protocol

Flags are all set by the operating system as it handles the low-level chip – IFD communication. They

can be viewed and manipulated by an application, but there is little call to do so. In those cases where

it is necessary Figure 25: Transport Protocol Type Bitmap and Figure 26: Protocol Boolean Flags

Bitmap explain the bit maps used for the protocol bytes.

B8 B7 B6 B5 B4 B3 B2 B1 Name description

x x x RFU Undefined

 x Others Other protocol used

 x x TCL Contactless transport

 x x x x T15 T= 15 protocol used

 x x x T14 T = 14 protocol used

 x T1 T = 1 protocol used

 T0 T = 0 protocol used

Figure 25: Transport Protocol Type Bitmap

B8 B7 B6 B5 B4 B3 B2 B1 Name description if set

x Restarted Application restarted

following Exit To

MULTOS & Restart

primitive

 x RFU Undefined

 x Disable GR Disables Get Response

 x Expecting GR Expecting Get Response

 x Cmd Data Rxed Data received

 x Le valid Value is valid

 x Lc valid Value is valid

 x P3 valid Value is valid

Figure 26: Protocol Boolean Flags Bitmap

For more information about transport protocols see [7816-3].

4.6.7 Dynamic Memory

Dynamic data is volatile and held in the RAM memory of the MULTOS Card. Like the other areas

Dynamic memory is behind a firewall and private to the application. Unlike the other areas this

memory can consist of two parts: session data and the stack.

Session Data is RAM based application variables, which are available to any function used in the

application. The size of the session data area is fixed when an application is loaded onto a MULTOS

Card and will always appear at the bottom of the dynamic area. Session Data, however, is not

mandatory and if none is used, then none will be present.

The stack is an application’s work area. A MULTOS chip is a stack machine, which means that this

memory area is used to perform many functions. For example, most primitives and many instructions

use stack-based values as input.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 29

The offset register used for Dynamic memory is slightly more complicated that for Public and Static

because of the two-part structure and use of the stack. An example of the registers is given in Figure

27: Dynamic Memory Offset Registers.

Figure 27: Dynamic Memory Offset Registers

The concept of Dynamic Top, DT, and Dynamic Bottom, DB, is exactly the same as for the equivalent

references in Static and Public memory. That is, the top byte of the stack can be referenced as DT[-1]

and the preceding byte as DT[-2], while addresses from the bottom begin with DB[0] followed by

DB[1] and so on. Local Base, LB, however, is particular to Dynamic.

Local Base defines the bottom of the stack for the function that is currently executing. Figure 27:

Dynamic Memory Offset Registers illustrates the registers when main() is executing. If a function were

to be called from within main(), the stack would be similar to that given in Figure 28: Dynamic

Memory during Function Call.

Figure 28: Dynamic Memory during Function Call

Note that DB[0] remains the same and that DT[-1] still point to Dynamic Top even though the stack

has grown in size. The four control bytes illustrated are handled by MULTOS. LB now points to the

bottom of the stack relative to the function.

At the start session data, if present, is initialised to zero and the stack is empty. During application

execution the different values held in session data can be read from and written to. The stack will

change sizes dynamically depending on the amount of space needed to perform the operations as

programmed.

The maximum size of the stack is fixed by the amount of physical memory available. This means that

applications will need to ensure that their use of dynamic memory does not exceed the limit imposed

by the chip on which the application will reside. The maximum dynamic size may be obtained using

the Get MULTOS Data command or from the [MIR]. It is also available to any application by using the

primitive Get MULTOS Data.

4.6.8 Condition Code Register

The Condition Code Register (CCR) is a single byte that holds bit flags, which are set according to the

outcome of arithmetical operations. Figure 29: CCR Flags Bitmap shows the structure of the CCR.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

30 MULTOS is a registered trademark of MULTOS Limited.

B8 B7 B6 B5 B4 B3 B2 B1 Name Description

x x x x CCR8-

CCR5

General

Purpose Flags

 x C Carry Flag

 x V Overflow Flag

 x N Negative Flag

 x Z Zero Flag

Figure 29: CCR Flags Bitmap

The flags used have the following meanings:

 Zero Flag: set if the result is 0, cleared otherwise

 Negative Flag: can be set, if the result should have its most significant bit, the sign bit set; i.e.,

if the result is negative.

 Overflow Flag: can be set when a signed result exceeds it limits.

 Carry Flag: set if an unsigned result exceeds its limits.

 General Purpose Flags: can be used to communicate information from the application to the AAM.

Flags must be reset by the AAM once they have been read.

For example, adding the integers 65535 and 2 gives a sum of 65537. In the case where integers are

represented as 2-byte hexadecimal values, the operands are 0xFFFF and 0X0002. For MULTOS, which

has 2.-byte integers, the addition would be represented as 0xFFFF + 0x0002 = 0x0001 with the CCR

C Flag being set.

As can be seen from the brief definitions the Negative and Overflow flags, these are used when

signed arithmetic is used. MULTOS does not interrogate these bit flags. So, even if the underlying

hardware did set them, and some do not, the operating system does not use them. This means it is

not advisable to write applications that rely on signed arithmetic as they will not be portable.

The operating system does use the C and Z flags and interrogates the CCR when the application uses

conditional jump, call and branch instructions. The only flags the OS uses for decision making are the

C and Z flags. The arithmetical comparison result and the corresponding flag settings the OS checks

are shown in Figure 30: CCR Result Flag Check.

Arithmetical Comparison Result Flag Settings

Equal to Z is set, C is cleared

Less than Z is cleared, C is set

Less than or equal to Either Z or C are set

Greater than Neither Z nor C is set

Greater than or equal to C is not set

Not equal to Z is not set

Figure 30: CCR Result Flag Check

Knowing which flags are set is valuable. The [MDRM] provides details on how each instruction and

primitive affects the CCR and this can effect what comparisons are used in a program. Please note

that the Z and C flags may be set to indicate the result of a primitive and that the primitive may not

involve an explicit arithmetic operation. For example, the primitive Get MULTOS Data takes the length

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 31

of data to be read as an argument. If less data was read than was requested, the CCR C flag will be

set.

The CCR can be examined and manipulated by an application. The primitive Load CCR places the byte

value on the stack, while Store CCR moves the top stack byte to the CCR.

4.6.9 MULTOS Executable Language

Applications can be written in Java, C or the MULTOS Assembly Language. Once the code is written it

is then assembled into the byte code that is loaded onto a chip. That byte code is the MULTOS

Executable Language or MEL and is the same for all MULTOS chip types.

MEL is an interpreted language. So, when an application is executing the AAM is interpreting each

line as it executes. Part of the interpretation is a series of checks that occur every time the code is run.

The checks are:

 Ensuring that the instruction stays within the space of the executing application, where the

application space is that found in Figure 17: Application Space in MULTOS

 Ensuring that the byte code interpreted is valid

 If the code line uses a primitive, the check ensures that the primitive is available.

 If the code line uses a cryptographic primitive, the AAM ensures that the executing application

was loaded with the required permission to access these primitives.

 If the code line calls a codelet, the check ensures that it is present.

If any of these checks fail, the AAM will abnormally end, or abend, the application. An abend simply

returns control to the OS. From an IFD perspective, the command would time out and the

communication with then application could be restarted.

The MULTOS AAM is included as part the OS specification. That is the AAM is functionally defined

and this means that all MULTOS implementations will perform as expected. In this way MULTOS

applications are independent of the underlying hardware and, therefore, are portable. An application

developer need not be overly concerned with the target card type.

4.7 Silent Mode

For some applications, such as passports and ID, it may be a requirement that the MULTOS chip does

not provide any information, via its card edge commands, that could aid someone trying to

compromise the security of the device.

The primitive Set Silent Mode can be used by an application to control the behaviour of the GET

CONFIGURATION DATA, GET MANUFACTURER DATA, GET MULTOS DATA and OPEN MEL card edge

commands (note it does not affect the information returned by MULTOS to applications using

primitives).

When in Silent Mode, the device public key certificate is not returned and the MCD_ID and INIT_DATE

values are set to be all equal to 0x00.

Silent Mode was introduced in MULTOS 4.3.1 where it was possible using the primitive to turn it on

or off. In MULTOS 4.3.2, the ability turn Silent Mode on but then temporarily suspend it until the next

reset was added.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

32 MULTOS is a registered trademark of MULTOS Limited.

4.8 Process Events

4.8.1 Overview

This functionality allows applications to execute and process more events than just the application

APDUs. For example, following a SELECT APDU the application can be made to execute immediately

to process the select event, giving the application the opportunity to test the P2 value and to return

the required response data (e.g. the FCI and the SW). To enhance applications further other process

events are supported: automatic application selection, application reselection, application deselection,

application creation and application deletion.

The application is able to reject the event that it is processing. For example, when processing a

SELECT APDU it can reject the select, making the application not selected when the SELECT APDU

processing has completed.

Applications are able to process these events if bit 10 (numbered from 0) of the application’s access

list is set in the application load certificate.

4.8.2 Primitives

There are two primitives that an application can call to get the process event and to reject the current

process event.

The Get Process Event primitive can be called by any application to get the number of the application

process event that caused the application to be executed by MULTOS.

The Reject Process Event primitive can be called by any application to request that the current

application process event is rejected by MULTOS. The application continues to execute normally, with

MULTOS processing the request when the application exits. The effect of calling this primitive

depends upon the event that is being rejected (see below).

4.8.3 SELECT Processing

The functionality of the SELECT command changes if it is used to select an application that has bit 10

of its access list set. In this case MULTOS does not test the most significant 6 bits of P2. The

processing of the least significant 2 bits of P2 remain unchanged – i.e. they are used to control

whether the first (00b) or next (10b) application is to be selected.

4.8.4 Event Processing

When bit 10 of the application’s access list is set then the application will be executed by MULTOS for

each of the following process events.

Number Process Event

0 An APDU has been received and is to be executed by the application.

Note that this is the only possible process event for applications that do

not have bit 10 of the application’s access list set.

1 The application has been selected by a SELECT APDU. It is the

responsibility of the application to call Check Case (case 3 or 4) as

required and to return the SELECT response data (e.g. FCI) and SW.

2 The application has been automatically selected by MULTOS (e.g.

following a reset because it is a shell application or default application).

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 33

3 The application has been reselected by a SELECT APDU. It is the

responsibility of the application to call Check Case (case 3 or 4) as

required and to return the SELECT response data (e.g. FCI) and SW.

4 The application has been deselected by a SELECT APDU (e.g. because

another application has been selected).

5 The application has just been created. Note that this will result in the MF

being selected if there is no shell application loaded. If there is a shell

application loaded then it is automatically reselected.

6 The application is about to be deleted. Note that this will result in the MF

being selected if there is no shell application loaded. If there is a shell

application loaded then it is automatically reselected.

4.8.5 Event Rejection

An application can call the Reject Process Event primitive to request that the current application

process event is rejected by MULTOS. The effect of this primitive depends upon the event that is

being rejected as below.

Number Process Event Effect of Event Rejection

Request

0 An APDU has been received and is to

be executed by the application.

MULTOS returns 6D00.

1 The application has been selected by

a SELECT APDU.

The MF is selected.

2 The application has been

automatically selected by MULTOS

(e.g. following a reset because it is a

shell application).

No effect (i.e. it is not possible to

prevent an automatic select).

3 The application has been reselected

by a SELECT APDU.

The MF is selected.

4 The application has been deselected. No effect (i.e. it is not possible to

prevent an automatic deselect).

5 The application has just been

created.

The application is automatically

deleted and an SW of 9D1C

(application conditions not satisfied)

is returned.

6 The application is about to be

deleted.

The application is not deleted and

an SW of 9D1C (application

conditions not satisfied) is returned.

4.8.6 Card Unblock Primitive

The Card Unblock primitive can only perform a card unblock if the process event number is 0 (i.e. the

application is processing an application APDU).

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

34 MULTOS is a registered trademark of MULTOS Limited.

5 MULTOS Applications

This chapter is intended to provide an understanding of MULTOS application basics. These consist of

application session, application execution and examples of how to read and write data.

5.1 Language Definition

The [MDRM] provides details of the MULTOS Assembly Language instructions and primitives. All the

examples here that use the assembly language will do so in accordance with that document. Any

further explanations given here will be for clarification only. To make the assembler code easier to

read, the header file “standard.asm” as given in the section “Standard ASM Header File” may be

used.

A program written in assembly language has a certain structure as seen in Figure 31: MEL Code Line

Structure.

label

statement

comment

operand(s)

Mnemonic

cmdGetMemory

 POPW //Clean up the stack

 //------------------------------

 // CheckCase ISO Case 2

 //------------------------------

 PUSHB 0x02 //ISO Case 2

 PRIM prmCheckCase //CheckCase Prim

Figure 31: MEL Code Line Structure

The elements are:

 Labels: These are used to make the assembly code easier to read by allowing names to be used

instead of addresses. Labels can refer to either addresses in code, or to data locations. When

the code is assembled they are replaced by the corresponding address.

 Mnemonics: These are the assembly language version of a MEL instruction.

 Operand: An operand is a parameter used with an instruction.

 Statements: A statement is a complete line of code, it consists of a Mnemonic and any

operands required.

 Comments: These enable a programmer to place explanatory notes into the assembly source

code. All comments are treated as single line comments set off by “//”.

The examples using C rely on the libraries provided with SmartDeck. Explanations will be provided

when required, but the contents of the header files will not be published.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 35

5.2 Application Session

In short, an application session lasts from when an application is selected until either another

application is selected or power is removed from the card. There are, however, several steps that can

play a part in this process. They are:

 Card Reset: as discussed in the section “MULTOS and ATR” the chip will return an ATR in

response to a reset signal. In the case of a warm reset, any open application session will be

closed.

 Application Selection: as discussed in “Application Selection and Application ID” the dedicated

file needs to be selected in order for commands to be sent to the application.

 Command-Response Dialogue: APDU commands and responses can now be sent to and from

the selected application. See Figure 3: Command-Response Dialogue and its accompanying

text for more information.

 Session Termination: an application session can be terminated by selecting another application

or by removing the card from the IFD, thereby removing power from the chip.

Shell applications are an exception. Card reset works as expected. It is not necessary to select a shell

application, as it is always ready to receive commands. A shell application session is terminated only

when power is removed from the card.

It is possible to have other applications on a card where a shell is present. It is the responsibility of the

shell application to allow those applications to be selected, commands sent to them and response

sent to the IFD.

Using Delegation also introduces an exception. When an application delegates to another the session

data of the application delegated to will be retained until the end of the session of the delegating

application. So, the session data of the application delegated to will persist and if an application

wishes to use the functions of another where there may be several APDU required to complete the

processing, there is no need for either application to save explicitly the delegated to application’s

stack data.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

36 MULTOS is a registered trademark of MULTOS Limited.

5.3 Application Execution

Once an application is successfully selected, it can begin to execute. This section will describe the state

of the various memory areas immediately after application selection. It will then discuss the steps in

processing a command. There will also be code examples, in C and in the assembly language, with

comments illustrating how to handle the various routines.

5.3.1 Application State Prior to First Command Handling

Once an application is successfully selected, it is ready to process commands. An application always

starts in the following state:

 The code pointer is set zero, which means that application code always executes from the

beginning of its code space

 Static Bottom, Public Bottom and Dynamic Bottom are set to SB[0], PB[0] and DB[0]

respectively.

 Session data space is reserved for the application. So, for example, if 16 bytes were declared

when the application was loaded, 16 bytes beginning at the start of Dynamic Bottom, DB[0],

are blocked out and all are set to 0.

 The stack is empty, which means that the value of Local Base is the same as that of Dynamic

Top; i.e., LB = DT

 Static data is as it was left by any previous application session.

5.3.2 Checking CLA and INS

As mentioned previously, a chip card application is one that waits for and processes incoming APDU

commands. So, an IFD has to be programmed to send APDU in the correct order and to handle the

responses returned by the chip-based application. This implies that an application specific command-

response dialogue need be specified. This specification takes the form of agreeing how the required

functions can be expressed as APDU commands, possible application responses and expected IFD

behaviour. Here the assumption is that this work has been done.

Now, when a command APDU is sent the header bytes are allocated to the corresponding location in

Public memory. See Figure 24: MULTOS Public Memory Data Map for details. Any command data will

be placed starting at PB[0]. So, an executing application will first have to ascertain if the command

APDU embodies a meaningful command. The way to do this would be check to see if the Class byte

and Instruction byte correspond to expected values.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 37

In the following example, the value of the Class byte, CLA, is checked against an expected value and

then the Instruction byte, INS, is then checked to see if it matches. The class comparison is a

straightforward if x is not equal to y comparison. Testing the instruction is done using a switch

structure.

#include <multoscomms.h>

//***********************************

// Expected APDU Definitions

//***********************************

#define APP_CLA 0x90

#define INS_READ 0x10

#define INS_WRITE 0x20

void main(void)

{

 if (APP_CLA != CLA)

 {

 // Exit with Error Code

 }

 switch(INS)

 {

 case INS_READ:

 // processing here

 // Exit as appropriate

 break;

 case INS_WRITE:

 // processing here

 // exit as appropriate

 break;

 default:

 // Exit with Error Code

 }

}

Figure 32: CLA and INS Checking in C

Note that if a command is sent using an unrecognised CLA or INS an error will be issued. This is

important because an IFD has to be informed of the result of processing status. Furthermore, if the

application were not to cater for unrecognised values, the command would simply not start any

processing code and no Status Word would be returned. The resulting timeout would not provide any

insight into why the command failed.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

38 MULTOS is a registered trademark of MULTOS Limited.

Checking the CLA and INS values in MEL uses the same logic. However, as it is an assembler language,

the program flow is controlled using jumps based on the results of explicit comparisons. For example,

Figure 33: CLA Checking in MEL shows how the logic of the C class comparison statement is

translated. As an aside, the mnemonic “EQU” is a compiler directive that sees the name replaced by

the indicated equivalent value when the code is assembled.

 INCLUDE <standard.asm>

//***********************************

// Expected APDU Definitions

//***********************************

APP_CLA EQU 0x90

_main::

 // Compare CLA value with the expected value

 CMPB pCLA, APP_CLA

 // If they are not equal, jump to error handling code

 JNE err_CLA

 // more code here

err_CLA

 // Exit with error code

Figure 33: CLA Checking in MEL

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 39

In order to check if the Class byte is relevant to the application, the value of that byte needs to be

compared with the expected value. That comparison uses the compare byte instruction, which sets

the CCR Z flag if the values are the same. The mnemonic JNE is read as “jump if not equal to” and, if

that condition is met, will jump to the label given. A similar syntax is used to check the Instruction

byte.

INS_READ EQU 0x10

INS_WRITE EQU 0x20

_main::

// Class checking here

 // put INS on stack

 LOAD pINS, 1

CMPB , INS_READ

 JEQ cmd_Read

 CMPB , INS_WRITE

 JEQ cmd_Write

 JMP err_INS

cmd_Read

 // remove INS byte

 POPB

// read code here

cmd_Write

 // remove INS byte

 POPB

 // write code here

err_INS

 // Exit with error code

Figure 34: INS Checking in MEL

In the examples what is being done is sieving the information in order to identify what application

function is to be executed. Further refinement could be added by using the P1 and P2 as function

parameters. The comparison logic used would be the same.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

40 MULTOS is a registered trademark of MULTOS Limited.

5.3.3 Exiting an Application

As seen in Figure 7: APDU Response an application is expected to respond with a Status Word. Data

may also be returned and if it is the length of the data returned, La, needs to be indicated. So, an

application needs to cater for all of these possibilities. However, in the case of successful processing

an application can simply exit as MULTOS provides a default SW of 90 00 and a default La of 0.

Condition SW Data and La

Success, no data 90 00 Data not sent and La not set

Success, with data 90 00 Data sent and La set

Error or Warning, no data As per application Data not sent and La not set

Error or Warning, with data As per application Data sent and La set

Figure 35: Application Exit Conditions

Examples used later in this document will show how to use the various exit possibilities.

5.3.4 MULTOS and GET RESPONSE

The listing given in Figure 35: Application Exit Conditions is given from the point of view of the

application. That is, an application attends to setting the SW, data and La and exits. After the

application exits, the operating system assumes control and oversees the low-level communication.

Now, it is possible that the La value that is to be communicated may indicate that the return data is

larger than Public can hold or it may not be equal to the Le. The different cases and the OS handling

are summarised in Figure 36: La Handling.

High Security Multi-application
Operating System - Test Card

Returns SW1, SW2
from Public

Returns SW1, SW2
= 6F00

Returns SW1, SW2
from Public plus Le Data

Returns SW1 = 61
SW2=La

yes

yes

yes

yes

no

no

no

La = 0

La > MaxPublic

Le = NULL Le < La

Le >= La

SW1

SW1

SW2

SW2

SW1 SW2response data

SW1 SW2

Figure 36: La Handling

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 41

To clarify the figure, there are some points worth noting with respect to La handling:

 If the La = 0, only a SW will be returned. So, it is important to ensure that an application sets

the La value if it wishes to return data.

 A SW of 6F 00 indicates that Public memory can not hold all the data that is to be returned.

The maximum Public size is found in the response to the command or primitive “Get MULTOS

Data”.

 If the La > Le, MULTOS will issue a SW of 61 xx, where xx is the hexadecimal representation of

the La value

 If La <= Le, the OS will send the SW along with Le bytes of data taken from the Public memory

buffer starting at PB[0]. So, when La < Le, the response of length La will be padded with the

following (Le – La) number of bytes.

The last point may be somewhat unclear. So, by way of an example, let Le = 16 and as the result of

successful processing La = 10. The OS will return a SW of 90 00 and 16 bytes of data. The first 10

bytes, starting at PB[0] and ending at PB[9], will be the data returned by the application and the

following 6 bytes will those found in the range PB[10] to PB[15]. This means that the last 6 bytes

could have any value because the OS does not erase values in Public during an application session.

There are ways to avoid the possible complications arising from the case where La < Le. One is to

have Le = 0 and rely on GET RESPONSE to fetch the required data. Another is to have the application

return an SW requesting that the command be sent again with an Le that will be equal to the La.

An application that uses the latter approach will first process an incoming command and, thereby,

know what the La will be. The application, then, ascertains that La is not equal to the Le. It uses a SW

of 6C xx, where xx is the hexadecimal representation of the value of La, to request that the command

be sent again and that the xx value should be used as the Le. The second transmission of the

command then has La = Le and the data is returned normally by the OS.

In the case where the SW is 61 xx., it indicates that processing was successful and that data of length

La is available for transmission to the IFD. The IFD would then need to issue a GET RESPONSE

command as given in [7816-4]. The OS would handle this command and send xx bytes of data.

The points addressed in this section are intended to provide enough understanding of the OS

handling of responses so that developers will know what to expect when working with a MULTOS

card. Please note that the GET RESPONSE handling is done completely by the OS and an application

does not need to concern itself with this.

5.4 Basic Programming Techniques

This chapter is intended to provide information and code samples to demonstrate how the basic

functions of a MULTOS application could be written. The first section discusses the importance of the

CheckCase primitive. This is followed by how to declare MULTOS memory usage. There are then

sections dedicated to how to read and write data to the different ISO file types, which makes use of

the memory declarations. The penultimate section highlights the memory implications when using

functions. The final section provides the code for a complete application that simply reads and writes

data in a linear fixed manner.

The sample code is written in both C and the assembly language for the reading functions. The

writing functions are very similar and rather than duplicate two sets of code, they are given in C only.

Check Case

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

42 MULTOS is a registered trademark of MULTOS Limited.

In the section “MULTOS and GET RESPONSE” it was stated that the OS handled the low-level

communications. This is true; however, an application must explicitly inform the OS of what to expect.

This is done using the primitive CheckCase.

CheckCase is used to tell MULTOS what data to expect and how to interpret bytes received from the

IFD. When the application is activated only the APDU header is available. An application calls

CheckCase indicating the ISO case of the command. Once this is done MULTOS can then interpret the

bytes received, get the command data from the terminal if applicable and once the application has

terminated MULTOS uses the case to decide whether to send response data. When the APDU is an

ISO Case 2 or an ISO Case 4 command, the operating system returns response data as per Figure 36:

La Handling.

Using CheckCase in code is easy. In C, the function CheckCase is invoked with the expected ISO case.

If it is not true, an error SW can be returned. In the assembly language, the ISO case number is placed

on the stack and then the primitive is called. A conditional jump line allows an application to respond.

// ISO Case Definitions

#define NODATAIN_NODATAOUT 1

#define NODATAIN_DATAOUT 2

#define DATAIN_NODATAOUT 3

#define DATAIN_DATAOUT 4

// 69 85 -> command not allowed, conditions of use not met

// here that means that APDU sent is not of the case expected

#define ERR_ISOCASE 0x6985

// CheckCase If statement for ISO Case 2

if (!CheckCase(NODATAIN_DATAOUT))

{

 // Exit setting error SW

 ExitSW(ERR_ISOCLASS);

}

Figure 37: ISO Command Case Checking in C

// ISO Case Definitions

NODATAIN_NODATAOUT EQU 1

NODATAIN_DATAOUT EQU 2

DATAIN_NODATAOUT EQU 3

DATAIN_DATAOUT EQU 4

ERR_ISOCASE EQU 0x6985

// Put Expected ISO Case on stack

 PUSHB DATAIN_NODATAOUT

 // Call Primitive

 PRIM 0x01

 // Primitive will remove case byte from stack

 // If case isn’t what expected jump to error handling

 JNE err_ISOCase

err_ISOCase

 EXITSW ERR_ISOCASE

Figure 38: ISO Command Case Checking in MEL

Checking the ISO Command Case should be done before starting any data processing.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 43

5.4.1 Declaring Memory Usage

An application must declare its memory usage. In particular, Session Data and Static memory can not

be created on the fly. Whatever values are given when an application is loaded are all that will be

available. Aside from this fact, declarations allow sensible names to be given to memory areas.

Structures and unions can also be used.

Declaring memory usage in C is dependent on the development tool in use. For the examples a pre-

compiler pragma directive is used. The memory declarations are standard C.

#define RECSZ 32

// Declare memory in Public

#pragma melpublic

union {

 unsigned int pRecordNumber;

 unsigned char pRecord[RECSZ];

} pub_mem;

// Declare Session Data

#pragma melsession

unsigned int dPINFlag;

// Declare Static memory

// here an array of 12 records

unsigned char sRecArray[12 * RECSZ];

Figure 39: Memory Declaration in C

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

44 MULTOS is a registered trademark of MULTOS Limited.

To declare memory usage in the assembly language state the area name, its memory location and size

in bytes.

RECSZ EQU 32

// Declare memory in Public

// an integer is a machine word, which is 2 bytes

pRecordNumber PUBLIC BYTE 2

// Declare Session Data

dPINFlag DYNAMIC BYTE 2

// Declare Static memory

// an array of 12 records

sRecArray STATIC BYTE (12 * RECSZ)

Figure 40: Memory Declaration in MEL

There is an intentional difference in the Public memory examples given in Figure 39: Memory

Declaration in C and Figure 40: Memory Declaration in MEL. When working in the assembly language

it is easy to refer directly to tagged addresses. So, for example, it is possible to do a memory copy to

PB[0]. However, in the lever level language C the tagged address PB[0] is not a valid memory location

identifier. It is, therefore, necessary to declare explicitly the memory that is used. The union ensures

that memory use is efficient.

5.5 Reading and Writing Data

As seen in the section “Elementary File Types” the different ISO file types are discussed. This section

will look at how data can be read from them. Before presenting code examples there are some basic

assumptions to clarify. They are:

The data to be accessed is immediately available after an application is selected; i.e., there is no

application file structure in place.

The CLA and INS bytes have been successfully checked.

CheckCase has been done.

5.5.1 Reading from Transparent Files

Transparent files are those where data is held as a sequence of data units, in the case of MULTOS this

means bytes. This implies that the data structure is already known; i.e. that any data returned is

sensible to the receiver. In any case, to access information a starting offset within the memory block

will need to be given as will a read length. So, the parameter bytes P1 and P2 will be used to specify

the staring offset and Le will be used to indicate the read length. Checking will need to be done to

verify that offset plus length does not pass the boundary of the data array.

#define TFDSZ 32

#define ERR_P1P2 0x6A84 // not enough memory space in file,

//here that means P1P2 offset is outside data array

#define ERR_P1P2LC 0x6A87 // Lc inconsistent with P1P2,

// here P1P2 < TFDSZ and P1P2 + Lc > array size

// P1P2 = starting offset in TransparentFileData

// Le = read length

// need to check that offset + length < array size (TFDSZ)

// P1P2 and Lc treated as integers in multoscomms.h

if ((P1P2 + Le) > TFDSZ)

{

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 45

 // need to check to see if P1P2 are valid

 // allows better error SW

 if (P1P2 > TFDSZ)

 {

 ExitSW(ERR_P1P2);

 }

 ExitSW(ERR_P1P2LC);

}

// if all is OK do memory copy from <string.h>

// memcpy(to, from, size)

memcpy(pubmem.TFD_IO, &TransparentFileData[P1P2], Le);

ExitLa(Le);

Figure 41: Reading from Transparent File in C

When working in the assembly language, the overall logic is the same. The comparisons are used in

the same way as in the section “Checking CLA and INS“. However, in order to check if the P1 P2

offset is greater than the maximum size, it is necessary to create an integer. An integer is a machine

word and, in the case of MULTOS, this is 2 bytes. Figure 42: Transparent File Handling in MEL: Offset

Checking shows how this is done.

TFDSZ EQU 32

INT EQU 2

ERR_P1P2 EQU 0x6A84

// Check that P1P2 <= TFDSZ

// Create integer by loading P1 then P2 to stack

LOAD pP1, 1

LOAD pP2, 1

PUSHW TFDSZ

CMPN , INT

// remove TFDSZ integer value

POPN INT

JGT err_P1P2

err_P1P2

 EXITSW ERR_P1P2

Figure 42: Transparent File Handling in MEL: Offset Checking

Continuing from where the previous example left off, checking that the offset and length are within

the memory area is easier to do as the OS holds the Le as a two-byte value.

ERR_P1P2LC EQU 0x6A87

// check that P1P2 + Le < TFDSZ

LOAD pLe, INT

// use ADDN to get size

ADDN , 2

// compare result, on bottom of stack, with maximum

CMPW LB[0], TFDSZ

JGT err_P1P2LC

err_P1P2LC

 EXITSW ERR_P1P2LC

Figure 43: Transparent File Handling in MEL: Read Length Checking

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

46 MULTOS is a registered trademark of MULTOS Limited.

This procedure will be returning data, but the length is dependent on the value of the Le in the APDU

command. The starting offset is not fixed either. This means that neither the length of data to return

nor the staring offset can be hard coded into the program. They can, however, be calculated. The

calculation of the offset is possible because in MULTOS memory is contiguous. So, adding the integer

represented by P1 P2 to the starting address of the memory block gives the starting offset within the

memory area. In the case of the La value, the Le is simply copied over so that the La is always equal to

the Le.

sTransparentFileData STATIC BYTE TFDSZ = 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,

0x16, 0x17,0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F

// need to SET La value

// store moves bytes to a location

STORE pLa, INT

// remove result of ADDN

POPW

// stack: length, destination address, source address

LOAD pLe, INT

LOADA PB[0]

// calculate source address

LOADA sTransparentFileData[0]

LOAD pP1, 1

LOAD pP2, 1

ADDN , INT

// remove P1 P2 bytes from stack, not needed by primitive

POPW

PRIM 0x0C

// Using a plain EXIT here as La has been set previously

EXIT

Figure 44: Transparent File Handling in MEL: Setting La and Reading

Writing Data to a Transparent File

To write data to a transparent file a starting offset, length of data to write and the data are needed.

Memory boundary checking needs to be done; i.e., are the offset and the offset plus the write length

within the memory area.

// P1P2 = starting offset in TransparentFileData

// Lc = write length

// need to check that offset + length < array size (TFDSZ)

// P1P2 and Lc treated as integers in multoscomms.h

if ((P1P2 + Lc) > TFDSZ)

{

 // need to check to see if P1P2 are valid

 // allows better error SW

 if (P1P2 > TFDSZ)

 {

 ExitSW(ERR_P1P2);

 }

 ExitSW(ERR_P1P2LC);

 }

// if all is OK do memory copy from <string.h>

// memcpy(to, from, size)

memcpy(&TransparentFileData[P1P2], pubmem.TFD_IO, Lc);

Exit();

Figure 45: Writing to a Transparent File

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 47

5.5.2 Reading from Fixed Length Files

Fixed length files are those that hold records. So, a record has a fixed length and, assuming that a

command similar to READ RECORD is required, is returned in its entirety. In the following examples P2

only will be used as the record index, where the first record is indicated by 0. The program will not

interrogate the Le value because the use of the primitive CheckCase permits the OS to handle

communications even when La and Le are not equal.

The last point assumes that issuing a 61 xx under the appropriate circumstances as discussed in

section “MULTOS and GET RESPONSE” is the desired behaviour. It is simple enough to put in a check

to issue a 6C xx Status Word. This is illustrated in Figure 46: Returning 6C xx.

// C handling

#define RECSZ 16

#define SW6C 0x6C00

if (Le != RECSZ)

{

 ExitSW(SW6C + RECSZ);

}

// Normal processing here

// MEL Handling

RECSZ EQU 16

LOAD pLe, INT

 CMPW , RECSZ

 JEQ _ContProc

 EXIT SW6C + RECSZ

_ContProc

 // continue normal processing here

Figure 46: Returning 6C xx

The code for reading a record is straightforward. A check needs to be made to ensure that the record

being requested exists. If not, a “file not found” error Status Word can be issued. Otherwise a

memory copy of record size can be done. Because we are using a 0 based counting system the

starting offset of the record can be calculated by multiplying the record number by the record size.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

48 MULTOS is a registered trademark of MULTOS Limited.

#define RECSZ 16

#define RECNO 3

#define ERR_RECNOTFOUND 0x6A83

#pragma melpublic

union {

 unsigned char TFD_IO[TFDSZ];

 unsigned char FFD_IO[RECSZ];

} pubmem;

#pragma melstatic

unsigned char FixedFileData[(RECNO * RECSZ)] = {

 0x5B, 0x0F, 0x4A, 0x75, 0x61, 0x6E, 0x20, 0x42,

 0x61, 0x75, 0x74, 0x6A, 0x73, 0x74, 0x61, 0x20,

 0x5B, 0x0F, 0x4A, 0x65, 0x61, 0x6E, 0x20, 0x42,

 0x61, 0x70, 0x74, 0x6A, 0x73, 0x74, 0x65, 0x20,

 0x5B, 0x0F, 0x4A, 0x6F, 0x68, 0x6E, 0x20, 0x42,

 0x61, 0x70, 0x74, 0x69, 0x73, 0x74, 0x20, 0x20

 };

// P1P2 = record number, 0 based counting

// Le handled by check case.

// check that record number exists

if (P1P2 >= RECNO)

{

 ExitSW(ERR_RECNOTFOUND);

}

// if so, get it and calculate starting offset

memcpy(pubmem.FFD_IO, &FixedFileData[(P1P2 * RECSZ)], RECSZ);

ExitLa(RECSZ);

Figure 47: Fixed File Read in C

The approach to this procedure in MEL is quite similar. The biggest difference is that P1 and P2 are

not treated as an integer, but rather are checked individually. In our example the number of records

can be held in a single byte value so that P1 should always be 0 and P2 should be the zero based

record number. The fact that the number of records can be held in a single byte is quite useful. This

allows the use of the MEL instruction INDEX, which calculates the address of a record in a fixed length

structure. This does add a slight complication in that after using INDEX the 1-byte record number is

on the stack along with the calculated 2-byte address. However, by using Public as temporary storage

the stack can be adjusted so that the Memory Copy primitive can be used.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 49

// P1 P2 = record number

// here only 3 records so P1 = 0 and P2 < 3

CMPB pP1, 0

JNE err_RecordNotFound

CMPB pP2, RECNO

JGE err_RecordNotFound

// if record number is OK, do copy

// stack holds length, destination address, source address

PUSHW RECSZ

LOADA PB[0]

// using Index instruction to calculate source address

// index instruction uses top stack byte as record number

LOAD pP2, 1

// uses array name and length to calculate address

// the two byte address is then left on stack

INDEX sFixedFileData, RECSZ

// stack is now:

// 2-byte length, 2-byte addr, 1-byte recno, 2-byte rec addr

// need to remove the 1-byte recno before using primitive

// use store to move top two bytes in public temp storage

// remove the 1-byte value and move back the value

STORE PB[0], INT

POPB

LOAD PB[0], INT

// can now use memory copy primitive

PRIM 0x0C

// LA set here as value is always the same

EXITLA RECSZ

Figure 48: Fixed File Read in MEL

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

50 MULTOS is a registered trademark of MULTOS Limited.

5.5.3 Writing Data to a Linear Fixed File

Once again, the write procedure is very similar to reading data. In the reading of data the handling of

the Le was left to the OS. For writing a check can be introduced to ensure that a full record is written.

// P1P2 = record number, 0 based counting

// check that record number exists

if (P1P2 >= RECNO)

{

 ExitSW(ERR_RECNOTFOUND);

}

// ensure that a full is to be written

if (Lc != RECSZ)

{

ExitSW(ERR_P1P2LC);

}

// if so, write to it

memcpy(&FixedFileData[(P1P2 * RECSZ)], pubmem.FFD_IO, RECSZ);

Exit();

Figure 49: Linear Fixed File Write

5.5.4 Reading from a Linear Variable File

Linear Variable Files hold records. However, the length of these records is not fixed. This presents the

problem of how to locate a record. The transparent file byte offset is inadequate, as are some of the

techniques used for linear fixed files.

One approach would be to have individual commands to read each record. In application where the

data structure is known and more or less fixed, this may be a good way to proceed. The code used to

implement this would be the same as that used for fixed linear files because, effectively, what is being

done is the creation of n number of fixed length records, where n is the total number of variable

length records.

Another approach would be to have an index array that contains the addresses of the records and

another array that has the lengths of the various records. The command APDU will use P1 and P2 to

indicate the record number required. The application will then need to use the arrays to copy the

memory to Public and set the La.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 51

#define MAXRECLEN 15

#pragma melpublic

union {

 unsigned char TFD_IO[TFDSZ];

 unsigned char FFD_IO[RECSZ];

 unsigned char VFD_IO[MAXRECLEN];

} pubmem;

// VARIABLE FILE STATIC MEMORY

unsigned char VarRecordA [] = {

 0x4F, 0x06, 0xA0, 0x00, 0x00, 0x00, 0x05, 0x3C

 };

unsigned char VarRecordB[] = {

 0xFF, 0xAA, 0xBB

 };

unsigned char VarRecordC[] = {

 0x5B, 0x0D, 0x4A, 0x65, 0x61, 0x6E, 0x20, 0x42,

 0x61, 0x70, 0x74, 0x6A, 0x73, 0x74, 0x65

 };

unsigned char* VarRecordAddr[RECNO] = {

 VarRecordA, VarRecordB, VarRecordC

 };

unsigned int VarRecordLen[RECNO] = {

 8, 3, 15

 };

// P1P2 used to indicate Record Number

// make sure record exists

if (P1P2 >= RECNO)

{

 ExitSW(ERR_RECNOTFOUND);

}

// set La using length given in length array

La = VarRecordLen[P1P2];

// use record number as locator within address array

// using La as length because the value has already been set

memcpy(pubmem.VFD_IO, VarRecordAddr[P1P2], La);

// Plain Exit as La already set

Exit();

Figure 50: Reading from Linear Variable File in C

Once again the approach is very similar in the assembly language. In Figure 51: Reading from Linear

Variable File in MEL the checking of P1 and P2 is omitted because it is the same as that found in

Figure 48: Fixed File Read in MEL. The memory declarations are very similar. The biggest difference is

that the derivation of the source and length address must be explicitly. This done making use of the

INDEX instruction and means that the stack needs to be closely attended to prior to using the

primitive and before exiting.

// STATIC MEMORY FOR VARIABLE LENGTH FILES

sVarRecordA STATIC BYTE 8 = 0x4F, 0x06, 0xA0, 0x00, 0x00, 0x00, 0x05, 0x3C

sVarRecordB STATIC BYTE 3 = 0xFF, 0xAA, 0xBB

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

52 MULTOS is a registered trademark of MULTOS Limited.

sVarRecordC STATIC BYTE 15 = 0x5B, 0x0D, 0x4A, 0x65, 0x61, 0x6E, 0x20, 0x42, 0x61, 0x70,

0x74, 0x6A, 0x73, 0x74, 0x65

sVarRecordAddr STATIC WORD RECNO = sVarRecordA, sVarRecordB, sVarRecordC

sVarRecordLength STATIC WORD RECNO = 8, 3, 15

// CODE

// calculate La, record number on stack

LOAD pP2, 1

// use index to calculate address

INDEX sVarRecordLength, INT

// use the calculated address to load 2 byte value

LOADI , INT

// La = 0 so ADDN should result in storing La

// while keeping the La length value on the stack

ADDN pLa, INT

// destination address

LOADA PB[0]

// calculate source address

LOAD pP2, 1

INDEX sVarRecordAddr, INT

// use the address now on the stack to indirectly load

// the address of the appropriate record

LOADI , INT

// stack now is:

// ..., 2-byte length, 2-byte dest addr, 1-byte indirect addr,

// 2-byte indirect addr, 2-byte source addr

// need to remove indirect addrs

STORE PB[0], INT

POPN 3

LOAD PB[0], INT

// now do copy

PRIM 0x0C

// remove previous stack bytes: pP2 and 2-byte addr value

POPN 3

// Plain Exit as LA already calculated

EXIT

Figure 51: Reading from Linear Variable File in MEL

5.5.5 Writing to a Linear Variable File

The assumption here is that the write will replace a data item with another of the same size. So, aside

from the locating a record and ascertaining its size another check can be added to ensure that the full

record is replaced. If not, a Status Word of 6C xx will be returned.

if (P1P2 >= RECNO)

{

 ExitSW(ERR_RECNOTFOUND);

}

// check that write Lc = record size

if (Lc != VarRecordLen[P1P2])

{

 ExitSW(SW6C + VarRecordLen[P1P2]);

}

// if ok, do write

memcpy(VarRecordAddr[P1P2], pubmem.VFD_IO, Lc);

Exit();

Figure 52: Writing to Linear Variable File

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 53

5.5.6 Reading from and Writing to Cyclic Fixed Files

Reading from cyclic fixed files is little different than reading from a fixed length file. A record of fixed

length needs to be located and memory copy done. The biggest difference is in how reading a series

of records is handled.

Let’s assume that a series of read commands were issued with the goal of reading all records present.

In the case of linear fixed length records, if an attempt is made to access a record after the last, a

response of “record not found” is acceptable. On the other hand, a cyclic file structure is such that if

an attempt is made to read a record after the last, then, under certain circumstances, it may

appropriate to return the data from the first record.

There is no need to review fixed length record reading and writing as this is already covered in a

previous section.

//***********************************

// ISO Cases

//***********************************

#define NODATAIN_NODATAOUT 1

#define NODATAIN_DATAOUT 2

#define DATAIN_NODATAOUT 3

#define DATAIN_DATAOUT 4

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

54 MULTOS is a registered trademark of MULTOS Limited.

//***********************************

// Expected APDU Definitions

//***********************************

#define APP_CLA 0x90

#define INS_READ_FIXED 0x16

#define INS_WRITE_FIXED 0x26

//***********************************

// SW

//***********************************

#define ERR_APDUCLA 0x6800

#define ERR_APDUINS 0x6D00

#define ERR_ISOCASE 0x6985

#define ERR_RECNOTFOUND 0x6A83

#define SW6C 0x6C00

void CheckP1P2(unsigned int, unsigned int);

//***********************************

// MEMORY DECLARATIONS

//***********************************

#pragma melpublic

unsigned char FFD_IO[RECSZ];

#pragma melstatic

unsigned char FixedFileData[(RECNO * RECSZ)] = {

 0x5B, 0x0E, 0x4A, 0x75, 0x61, 0x6E, 0x20, 0x42,

 0x61, 0x75, 0x74, 0x6A, 0x73, 0x74, 0x61, 0x20,

 0x5B, 0x0E, 0x4A, 0x65, 0x61, 0x6E, 0x20, 0x42,

 0x61, 0x70, 0x74, 0x6A, 0x73, 0x74, 0x65, 0x20,

 0x5B, 0x0E, 0x4A, 0x6F, 0x68, 0x6E, 0x20, 0x42,

 0x61, 0x70, 0x74, 0x69, 0x73, 0x74, 0x20, 0x20

 };

//**

// MAIN

//**

void main(void)

{

if (APP_CLA != CLA)

 {

 // Exit with Error Code

 ExitSW(ERR_APDUCLA);

 }

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 55

 switch(INS)

 {

 case INS_WRITE_FIXED:

 if (!CheckCase(DATAIN_NODATAOUT))

 {

 ExitSW(ERR_ISOCASE);

 }

 CheckP1P2(P1P2, Lc);

 // if ok, write

 memcpy(&FixedFileData[(P1P2 * RECSZ)], FFD_IO, RECSZ);

 Exit();

 break;

 case INS_READ_FIXED:

 if (!CheckCase(NODATAIN_DATAOUT))

 {

 ExitSW(ERR_ISOCASE);

 }

 CheckP1P2(P1P2, Le);

 // if ok, read

 memcpy(FFD_IO, &FixedFileData[(P1P2 * RECSZ)], RECSZ);

 ExitLa(RECSZ);

 break;

 default:

 // Exit with Error Code

 ExitSW(ERR_APDUINS);

 }

}

void CheckP1P2(unsigned int Rec, unsigned int Length)

{

 if (Rec >= RECNO)

 {

 ExitSW(ERR_RECNOTFOUND);

 }

 if (Length != RECSZ)

 {

 ExitSW(SW6C + RECSZ);

 }

 return;

}

Figure 53: Read and Write Fixed Record Application Code

5.6 Functions

All of the examples in the previous sections had all the required code associated with a particular

instruction. This does lead to repeated lines of code. The way to reuse code is to write functions.

To continue from the examples, where the P1 and P2 parameters are used frequently, a function will

be written to check them. In the case of transparent files, the P1 and P2 parameters represent a

starting offset whereas for fixed and variable files they represent record numbers. So, the function

should be able to do both. The Le or Lc values are also checked to ensure a valid read or write is done.

It would be useful if the function could do both. So, a function declaration for this would be

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

56 MULTOS is a registered trademark of MULTOS Limited.

void CheckParam(unsigned int Type, unsigned int Start, unsigned int Len, unsigned int Max, unsigned

int RecSize);

The argument Type will indicate of a record or an offset check needs be made. The second argument,

Start, will be the P1P2 starting offset or the record to read. Len is either the Le or Lc and Max will

indicate either how many records are available or the maximum read or write allowed. Finally, the

argument RecSize is needed to indicate the how much data should be read or written from a record.

That the function does not return anything is due to the fact that any failures will result in an Exit with

an error SW being set. So, if the function finds no errors it returns to the calling code and, then, the

next line after the function call will be executed.

#define ERR_P1P2 0x6A84 // not enough memory space in file,

//here that means P1P2 offset is outside data array

#define ERR_P1P2LC 0x6A87 // Lc inconsistent with P1P2,

// here P1P2 < TFDSZ and (P1P2 + Lc) > array size

#define ERR_RECNOTFOUND 0x6A83

#define SW6C 0x6C00

#define OFFSET 1

#define RECORD 2

{

 if (Type == OFFSET)

 {

 if ((Start + Len) > Max)

 {

 if (Start > Max)

 {

 ExitSW(ERR_P1P2);

 }

 ExitSW(ERR_P1P2LC);

 }

 }

 if (Type == RECORD)

 {

 if (Start >= Max)

 {

 ExitSW(ERR_RECNOTFOUND);

 }

 if (Len != RecSize)

 {

 ExitSW(SW6C + RecSize);

 }

 }

 return;

}

Figure 54: Check Parameter Function Code

To use the function an application can supply values for the arguments it requires. So, for example,

the procedure that reads data from a transparent file does not check to see if the read length equals

the record size. So, in that context the code would be

CheckParam(OFFSET, P1P2, Le, TFDSZ, 0);

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 57

The write data to linear variable file record would use

CheckParam(RECORD, P1P2, Lc, RECNO, VarRecordLen[P1P2]);

As a final example, if the read fixed length record procedure did not wish to return a SW of

6C xx, then it could call the function using

CheckParam(RECORD, P1P2, 0, RECNO, 0);

In all of the examples above, the function call would replace the in line check. So, rewriting “Figure

52: Writing to Linear Variable File” using the function call would result in the code shown in “Figure

55: Using Function Call in Code”.

CheckParam(RECORD, P1P2, Lc, RECNO, VarRecordLen[P1P2]);

// if ok, do write

memcpy(VarRecordAddr[P1P2], pubmem.VFD_IO, Lc);

Exit();

Figure 55: Using Function Call in Code

5.6.1 Function Stack Usage

The use of functions as shown in the example may not be surprising. It is important, however, to

understand how the chip implements a function call. Stack usage is important to understand because

there is limited stack space and function calls within function calls may use more stack space than

anticipated. A simple procedure written in the assembly will be used to illustrate these points.

There are some assumptions made in the examples below:

 CLA and INS have already been properly handled

 CheckCase has already been done

 The stack is not empty

 The application has session data

The function that will be used is one that takes as input two integers, each a 2-byte machine word,

and returns the one with the greatest value. If the values are equal, a value of 0 is returned. The code

is given in its entirety in Figure 56: Example Function Call in MEL. The figures that follow illustrate the

state of the stack as the lines of code are executed.

INT EQU 2

// Function Example

PUSHW 0x0100

PUSHW 0x1000

CALL fnGreatestValue

// further processing here

EXIT

//**** FUNCTION START ****

fnGreatestValue

// need to define input value locations

InputWordA EQU LB[-8]

InputWordB EQU LB[-6]

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

58 MULTOS is a registered trademark of MULTOS Limited.

 // Put values on stack

 LOAD InputWordA, INT

 LOAD InputWordB, INT

 // Do comparison and return

 CMPN , INT

 BEQ fnGreatestValue_Equal

// if WordB > WordA, return WordB

 BLT fnGreatestValue_Exit

// otherwise remove WordB from stack

 // and return WordA

 POPW

fnGreatestValue_Exit

 // discard 4-byte input and return 2-byte greatest value

 RET 4, 2

FnGreatestValue_Equal

 // remove function stack bytes

 POPN 4

 // set result to 0x0000

 PUSHZ INT

 // discard 4-byte input and return 2-byte 0

 RET 4, 2

//**** FUNCTION END ****

Figure 56: Example Function Call in MEL

To begin the analysis of stack usage it is best to start with the state of the stack before the code

above starts executing.

Figure 57: Stack prior to Code Example Start

The dynamic registers, as discussed in the section “Dynamic Memory”, are set as expected.

The first thing the code does is to place the values to be compared on the stack using the PUSHW

instruction. The stack size increases by four bytes.

Figure 58: Stack after Input Bytes are placed

Once again, the dynamic registers are set as expected.

In the next line of code the procedure uses the CALL instruction to invoke the function. In this case,

CALL will always invoke the function. It is possible, however, to have conditional CALL instructions

that use the same comparisons and CCR settings as JUMP and BRANCH.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 59

Figure 59: Stack upon Function Call Execution

The stack undergoes noteworthy changes when the function call is executed. The first is that 4

control bytes are placed on the stack by MULTOS. These bytes hold the value of the code pointer

within the body of the calling code and the previous value of LB. The second is that LB is redefined to

be equal to DT; i.e., the stack is empty. Here it is important to note that the stack LB and DT are now

relative to the called function or, in other words, a function is allocated its own stack space. The rest

of the stack is still addressable and, in fact, the function uses this fact when defining the addresses of

the input bytes.

The function will use CMPN to determine which value is greater and return it. One way to do this is to

load the values onto the function stack. The two LOAD instructions do this.

Figure 60: Stack after Loading Values to Function Stack

After the comparison and ensuring that either the greatest value or zero are the top two bytes the

stack can be in one of two states. In Figure 61: Stack prior to Return from Function the top

illustration shows the stack when Word B is greater than Word A. The bottom image shows how the

stack would look if either:

 Word A is greater than Word B because Word A is removed by a POPW instruction, or

 the values are equal because both Word A and Word B were removed using the POPN instruction

for 4 bytes and replaced by 2 bytes of 0 placed using the PUSHZ instruction

Figure 61: Stack prior to Return from Function

The last line of code that the function executes is RET, return from function. This instruction is very

important because it indicates to the OS how to leave the stack after the function returns. Here the

code line

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

60 MULTOS is a registered trademark of MULTOS Limited.

RET 4, 2

Can be read as: when the function returns, remove 4 bytes of input data and replace them with the

top two bytes of the function stack. The operating system will also use the control bytes to set both

the code pointer register and LB to their values prior to the function call.

Figure 62: Stack after Return from Function

Each time a function is called the operating system caches the control bytes and allocates function

stack space. So, if a function were to call a function that calls another function, the stack space used

can expand quickly.

5.6.2 Variable Scope

Any variables held in Static or in Public or as Session Data are available to any function in the

application. It is also possible to use variables that are local to a particular function. Declaring the

variables at the start of the function does this. They will be allocated stack space during the life of the

calling function.

5.6.3 PIN management

Applications on a MULTOS device may be protected by a Personal Identification Number (PIN). As of

MULTOS version 4.3.2 and step/one version 1.4, it is possible for applications to share a single global

PIN such that updating it in one application updates it for all applications. The PIN can be up to 8

bytes long and the format is not fixed.

A new set of PIN management primitives have been introduced. These primitives can manage an

application specific PIN or the global PIN. See the [MDRM] for details of each primitive.

 Initialise PIN

 Read PIN

 Verify PIN

 Set PIN Data

 Get PIN Data

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 61

An application’s access to these primitives is controlled through two bits of the access_list field of the

Application Load Certificate (see [GLDA]) and it can have one of the following permissions:-

 Application: The PIN is not shared and only the application has control of the PIN.

 Global PIN / Basic: The application uses the global PIN but only has basic access rights.

 Global PIN / Write: The application uses the global PIN and has full access other than to read

the clear PIN.

 Global PIN / Full: The application uses the global PIN and has full access to it.

The following table shows how this maps to the primitives that are allowed for each permission.

Primitive ALC Permission

Application Global / Basic Global / Write Global / Full

Initialise PIN If not already

initialised

Read PIN

Verify PIN

Set PIN Data

Get PIN Data

Final note: The primitives do NOT manage the value of PIN Try Counter or PIN Try Limit. This is left to

how individual applications wish to manipulate these values.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

62 MULTOS is a registered trademark of MULTOS Limited.

6 Coding Examples

This chapter is intended to give practical examples of how to use MULTOS to perform different

functions. The examples are written in C for MULTOS and have been compiled and tested using the

SmartDeck development kit.

6.1 Secure Messaging

All of the examples in the previous chapters have been based on the assumption that is always

received exactly as it was transmitted. No checking is done on the content of the data. It is simply

accepted as is.

6.1.1 Introduction

Secure Messaging is a mechanism that provides a way to ensure that the data received is the same as

that which is transmitted. There are two variants of Secure Messaging. One guarantees authenticity

and the other guarantees authenticity and confidentiality. Authenticity is guaranteed by using

checksum values over the data. Confidentiality is given by further encrypting the data and checksum

values.

6.1.2 Approach and Code

The approach is similar to that of [7816-4]. There are some assumptions made about how secure

messaging will be implemented in the code example. They are:

 Secure messaging is expected so there is no need to inspect the CLA byte to see if it conforms

to the rules in [7816-4]

 The command header, CLA INS P1 and P2 bytes, will be included when calculating the secure

messaging MAC

 Both the key and initial value (IV) are known and agreed beforehand

 The DES CBC signature authentication value is 8 bytes in length

 The maximum length of application data is 64 bytes

 The CLA and INS bytes have been handled as appropriate

 CheckCase has already been done

 Confidentiality is not treated here

6.1.3 Structures and Memory Usage

The command used consists of two primitive data objects. The first with a tag of 0x80 holds the data

meant for the application and the second, with a tag of 0x8E, holds the 8-byte DES CBC

authentication value.

typedef struct {

 unsigned int DataTagLen;

 // data = command data + SM data object ("8E 08 ...")

 unsigned char DataIn[74];

} msg_in;

Figure 63: Secure Messaging Command Data Structure

For example, an application is to be sent an 8-byte block of 0x55. To do so using secure messaging

the data must part of a data object. In this case, the tag for the data is 0x80. As the length of data is

8, we have a TLV structure of 0x80 08 55 55 55 55 55 55 55 55.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 63

So, the expected command data will:

0x80 08 55 55 55 55 55 55 55 55 8E 08 xx xx xx xx xx xx xx xx

where the xx represent the DES CBC Signature value. Please note that this means that the APDU Lc

should be 0x14.

There are two points to clarify with respect to Figure 63: Secure Messaging Command Data Structure.

They are:

 The first two bytes of the command data, which correspond to the tag and length of the

application data, are treated as an integer to allow easier manipulation in the program code

 The DataIn array has a size of 74, which permits the maximum application data size of 64

bytes and the ten bytes of authentication value

The DES CBC signature calculation may use padding on the input values. We have seen this in the

example above. Here the input value is created in static memory and that area also has a structure.

typedef struct {

 unsigned char bCLA;

 unsigned char bINS;

 unsigned char bP1;

 unsigned char bP2;

 unsigned char HdrPad[4];

 // data = command data + up to 8 bytes of padding

 unsigned char DataVer[72];

} msg_to_verify;

Figure 64: Secure Messaging DES CBC Input Structure

The code examples make use of a session data variable. This has been done because the value is used

both before and after a function call. If it had been treated as a variable within main, then it would

have gone out of scope when the function was called.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

64 MULTOS is a registered trademark of MULTOS Limited.

The only other memory used is in Static. There is space to hold the key, initial vector and result of the

DES CBC signature operation. The data does not make use of any special integrity or validation

procedures.

#define BLOCKSZ 8

#define h8000 0x8000

#define CSSTAGLEN 0x8E08

#define QUOT 1

#define REM 2

#define ERR_DIVBYZERO 0x6500

#pragma melpublic

msg_in pMsg;

#pragma melsession

// need session variable as it is used before & after a function call

// and if only declared within main would go out of scope

unsigned int DataLen;

#pragma melstatic

msg_to_verify sMsg;

unsigned char sKey[BLOCKSZ] = {0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01};

unsigned char sIV[BLOCKSZ] = {0x0A, 0x0B,0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11};

unsigned char sDESCBCSig[BLOCKSZ];

Figure 65: Secure Messaging Memory and Constant Declaration

6.1.4 Checking Data and MAC Tag-Length

The first step is to check that the incoming command data has the correct structure. To do this the

code first checks the tag length value of the application data component. The expected value is 0x80

xx, where xx is the length of the application data, which will not exceed 0xFF bytes. The test is to

subtract 0x8000 from the value in public and then check to see if the resulting value is greater than

0x0100. This test relies on the fact that if the value submitted is less that 0x8000, the result of the

subtraction will be greater than 0x8000 with the CCR C flag set. So, for example, if the value is

0x79FF, the result of subtracting 0x8000 is 0xF9FF.

Once the tag length of the application data is verified the next step is check that the authentication

value data object is in the proper location and has the proper value. If the data tag length check was

passed, then the result will give the offset within the DataIn array of the msg_in structure. The value

found at that location is compared to the expected value of 0x8E08.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 65

#define ERR_SMDOMISSING 0x6987

// variable with scope in main()

unsigned int res;

// set incoming data length

DataLen = pMsg.DataTagLen - h8000;

// need to ensure that the Tag for the data = 0x8000

if (DataLen >= 0x0100)

{

 // SM Data Object Missing

 ExitSW(ERR_SMDOMISSING);

}

// check that tag - length for CSS is 0x8E08

// will use memcmp, use res for value

res = CSSTAGLEN;

if (memcmp(&res, &pMsg.DataIn[DataLen], INT) != 0)

{

 // SM Data Object Missing

 ExitSW(ERR_SMDOMISSING);

}

Figure 66: Secure Message Data Structure Check

6.1.5 Building DES CBC Input

The value in the authentication data object is a calculated one. The chip can also calculate a DES CBC

value. However, it needs to have the same input otherwise it can not match the supplied one. The

code builds the input data in Static memory using the following [7816-4] rules:

Because the header is included the input value will start CLA INS P1 P2 80 00 00 00

The data component requires from 1 to 8 bytes of padding, where the first is always 0x80 followed

by 0 to 7 bytes of 0x00. The size of padding is dependent on the data size, but the aim is to ensure

that the input data size is always a multiple of 8. In the case where the data size is already divisible by

8 an additional block of 8-byte padding is added.

For example, the authentication value is calculated over the APDU header, here that is 0x94 10 00 00

and the data along with padding as specified in [7816-4]. So, assuming application data of 8 bytes of

0x55, the hexadecimal input to the DES CBC signature algorithm would be

0x94 10 00 00 80 00 00 00 55 55 55 55 55 55 55 55 80 00 00 00 00 00 00 00.

The data padding the code in Figure 67: Secure Message DES CBC Input Building continues from the

previous figure and uses a function to calculate the remainder when the data size is divided by 8. This

remainder is used to calculate the padding needed. If the remainder is 0, the remainder value is

redefined to be equal to 8. This has been done to allow the code in Figure 68: Secure Messaging

MAC Verification to calculate correctly the input size.

// if ok, populate static with message

sMsg.bCLA = CLA;

sMsg.bINS = INS;

sMsg.bP1 = P1;

sMsg.bP2 = P2;

sMsg.HdrPad[0] = 0x80;

memset(&sMsg.HdrPad[1], 0x00, 3);

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

66 MULTOS is a registered trademark of MULTOS Limited.

// first block set, now copy in data

// data from data component of public to data component of static

memcpy(sMsg.DataVer, pMsg.DataIn, DataLen);

// need to calculate padding size

res = Divisible(REM, DataLen, BLOCKSZ);

sMsg.DataVer[DataLen] = 0x80;

// do padding in static

if (res != 1)

{

 if (res == 0)

{

 memset(&sMsg.DataVer[DataLen + 1], 0x00, (BLOCKSZ - 1));

 // refine res for DES CBC function

 res = 8;

}

else

{

 memset(&sMsg.DataVer[DataLen + 1], 0x00, (res - 1));

}

}

//FUNCTION TO DETERMINE REMAINDER

int Divisible(unsigned int Type, unsigned int Size, unsigned int Divisor)

{

 div_t result;

 // checks

 if (Divisor == 0)

 { ExitSW(ERR_DIVBYZERO);

 }

 if (Size < Divisor)

 { result.rem = (Divisor - Size);

 result.quot = 0;

 }

 else

 { result = div(Size, Divisor);

 }

 if (Type == REM)

 { return result.rem;

 }

 else

 { return result.quot;

 }

}

Figure 67: Secure Message DES CBC Input Building

6.1.6 DES CBC Value Calculation and Verification

Once the input is built, the next step is to have the application calculate the DES CBC signature.

MULTOS has a primitive, Generate DES CBC Signature, which returns the appropriate 8-byte value.

The last step is to compare the supplied 8-byte value to the one calculated by the application. If it fails,

an error message will be given.

#define ERR_SMDOWRONG 0x6988

// Do MAC Calculation

// INPUT:

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 67

// message length: header + padding data + padding,

// IV: use agreed value

// key: sKey,

// address where to place output

// address of plain text

GenerateDESCBCSignature((BLOCKSZ + DataLen + res), sIV, sKey, sDESCBCSig, &sMsg.bCLA);

// the 8-byte MAC will be the last enciphered block of plaintext

// will need to verify against input in 8E08...

if (memcmp(sDESCBCSig, &pMsg.DataIn[(DataLen + INT)], BLOCKSZ) != 0)

{

 ExitSW(ERR_SMDOWRONG);

}

Figure 68: Secure Messaging MAC Verification

To finish with the example data given previously, Using the DES key and IV as given in Figure 65:

Secure Messaging Memory and Constant Declaration, the authentication value when the application

data is 8 bytes of 0x55 is 0xA8 02 81 F6 EB 11 4A A1.

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

68 MULTOS is a registered trademark of MULTOS Limited.

6.2 Checking Static Data Integrity

Most, if not all, of the examples given in this document make no special provision for Static Data

integrity. That is, the data is assumed to be good. This may be enough in some cases, but in cases

where it is not a mechanism for checking integrity.

6.2.1 Introduction

MULTOS guarantees that Static memory will not be corrupted by application activity. The OS, however,

does not concern itself with the application’s data content. It is quite possible for an application to

write nonsensical values to its data area provided that the application code permits a write to the

particular memory area. Secure messaging provides a method for checking the integrity of command

data. Similar methods could be used to verify the data already resident in Static memory. In this

section the emphasis will be on using the MULTOS primitive Checksum to assess the data held in

static.

6.2.2 Off Card Checksum Generator

One very easy way to get a checksum value is to write a MULTOS card application that can do the

calculation. The sample code in this section should provide a good basis for doing that. In some cases

this is not possible. The code given in Figure 69: Off Card Checksum Program has been compiled

using DJGPP gcc version 3.1 and tested on a Windows NT4 SP6 platform. It is for a command line

utility that accepts a binary file as input and displays the 4-byte checksum. The code can be modified

as required.

// *************************************

// C Checksum Generator

// *************************************

#include <stdio.h>

#include <string.h>

#define EXPECTED_ARGS 2 // -> EXE name and binary file path

#define CSSZ 4

#define MAXMSGSZ 1024

unsigned char checksum[CSSZ];

unsigned char Msg[MAXMSGSZ];

FILE *fhandle_src;

int i, j;

// will take binary file as input

// read that into Msg buffer

// and then perform calculations

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 69

int main(argc, argv)

int argc;

char *argv[];

{

// Checking arguments

if (argc != EXPECTED_ARGS)

{

 puts("Command line should read >chksum <input file path>\n");

 return 1;

}

// Opening file

puts("Opening source file...\n");

if ((fhandle_src = fopen(argv[1], "rb")) == NULL)

{

 printf("Unable to open source file \"%s\"\n", argv[1]);

 return 1;

}

// READ IN INPUT

i = 0;

do {

 fread(&Msg[i], 1, 1, fhandle_src);

 i++;

} while ((feof(fhandle_src) == 0) && (i < MAXMSGSZ));

if (i >= MAXMSGSZ)

{

 printf("Binary file input greater than maximum allowed: %d bytes", MAXMSGSZ);

 return 1;

}

puts("Starting checksum calculation...\n");

// DO CHECKSUM CALCULATION

// intialise values

checksum[0] = checksum[2] = 0x5a;

checksum[1] = checksum[3] = 0xa5;

// cycle through input

// use (i – 1) because i is incremented before EOF check

for (j = 0; j < (i - 1); j++)

{

 checksum[0] += Msg[j];

 checksum[1] += checksum[0];

 checksum[2] += checksum[1];

 checksum[3] += checksum[2];

}

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

70 MULTOS is a registered trademark of MULTOS Limited.

puts("Checksum is: ");

for(i = 0; i < CSSZ; i++)

{

 printf("%02x ", checksum[i]);

}

putchar('\n');

return 0;

}

Figure 69: Off Card Checksum Program

6.2.3 Approach and Code

There are two types of checks done in the following code excerpts. In “Checking Existing Checksum

Values” a checksum is used to verify that values held in static have not been incorrectly changed. This

can be used to verify that a write took place as expected. In all cases the checksum primitive produces

a 4-byte value.

In this example P1 and P2 are used to indicate the record number to update so a function CheckP1P2

checks their validity. The full code for this can be seen in Figure 53: Read and Write Fixed Record

Application Code. Another function, CheckCS, is used to verify that the application computed

checksum value matches what is expected.

6.2.4 Memory and Constant Declaration

#define ERR_SECURITY 0x6982

#define ERR_MEMCHGINC 0x6500

#define ERR_FUNCNOTSUPP 0x6A81

#define INT 2

#define RECSZ 8

#define CHKSUMSZ 4

#define RECNO 3

// CheckCS type values

#define SECURECHK 1

#define WRITECHK 2

// define structure of fixed static data

typedef struct {

 unsigned char DataBlockA[(RECNO * RECSZ)];

 unsigned long DataBlockAChksum;

} fixed_data;

// define structure of static that can be updated

typedef struct {

 unsigned char DataBlockX[(RECNO * RECSZ)];

 unsigned long DataBlockXChksum;

} update_data;

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 71

// FORWARD DECLARATIONS

void CheckP1P2(unsigned int, unsigned int);

void CheckCS(unsigned int, unsigned long, unsigned long);

#pragma melpublic

unsigned char DataIn[RECSZ];

#pragma melstatic

fixed_data sFixed = {

 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,

 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,

 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33,

 0x8a6d1a3d

 };

update_data sUpdate = {

 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb,

 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,

 0xe2b9021b

 };

Figure 70: Data Integrity Declarations and Constants

6.2.5 Checking Existing Checksum Values

The sample code does checksum calculations over two linear fixed record areas: one where the data is

fixed and the other where the data can be updated. After the usual CLA, INS and Checkcase work,

the application verifies that the data contained in the application corresponds to the checksum value

held as part of the data structure.

// Known function

CheckP1P2(P1P2, Lc);

// Check the integrity of the fixed data first

// arguments are: size of area, start address, where to write result

CHECKSUM((3 * RECSZ), sFixed.DataBlockA, &TempChksum);

CheckCS(SECURECHK, TempChksum, sFixed.DataBlockAChksum);

// Check integrity of update data

CHECKSUM((3 * RECSZ), sUpdate.DataBlockX, &TempChksum);

CheckCS(SECURECHK, TempChksum, sUpdate.DataBlockXChksum);

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

72 MULTOS is a registered trademark of MULTOS Limited.

//------------- CheckCS -----------------------------

void CheckCS(unsigned int Type, unsigned long Calculated, unsigned long Expected)

{

 // check result against expected value

 if (Expected != Calculated)

 {

 switch (Type)

 {

 case SECURECHK:

 // Pre-write check failed

 ExitSW(ERR_SECURITY);

 case WRITECHK:

 // Post-write check failed

 ExitSW(ERR_MEMCHGINC);

 default:

 // Type unrecognised: defensive coding

 ExitSW(ERR_FUNCNOTSUPP);

 }

 }

 return;

}

Figure 71: Data Integrity Verifying Existing Checksums

There is a key point of clarification with respect to Figure 71: Data Integrity Verifying Existing

Checksums: checksum values are treated as unsigned longs, or double length machine words, which

are 4 bytes. The OS simply treats them as 4-byte blocks. So, the line

if (Expected != Calculated)

is actually assembled as

LOAD SB[_Expected]

CMPN SB[_Calculated], 4

JNE err_handling

It is important to understand that higher level language source code is compiled and then assembled

into MEL byte code. The behaviour of the C if not equal statement and the assembly compare is the

same.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 73

6.2.6 Checksum and Transaction Protection

Continuing from Figure 71: Data Integrity Verifying Existing Checksums the sample, then, goes on to

use transaction protection so that a write can be cached while a new checksum value is calculated.

After the writes are committed a check is done to the update memory area to ensure that the write

was successful

// TRANSACTION PROTECTION ON

SetTransactionProtection(TPOn);

// do memory copy (write to static); uncommitted

memcpy(&sUpdate.DataBlockX[(P1P2 * RECSZ)], DataIn, RECSZ);

// calculate new checksum and prepare to write that to static

// N.B. checksum ALWAYS includes uncommitted writes

CHECKSUM((3 * RECSZ), sUpdate.DataBlockX, &sUpdate.DataBlockXChksum);

// TRANSACTION PROTECTION OFF & COMMIT

SetTransactionProtection(TPOff|TPCommit);

// Check write

CHECKSUM((3 * RECSZ), sUpdate.DataBlockX, &TempChksum);

CheckCS(WRITECHK, TempChksum, sUpdate.DataBlockXChksum);

Figure 72: Data Integrity Checksum and Transaction Protection

The application does not stop a write from happening, but does indicate if Static memory has been

changed incorrectly.

6.3 Delegation

Without delegation two applications could work together, but this can only be done via the IFD. In

some cases this may be appropriate, but there will also be cases where it is not possible to modify an

IFD. However, with delegation two applications can work together without involving the IFD.

6.3.1 Introduction

Different applications on a multi-application smart card may contain code to implement a certain

function. An issuer may also wish augment the overall card functionality. For example, the

applications may all contain PIN check code or an issuer may want to ensure that all other applications

can invoke a payment application to facilitate transactions. Delegation could be used to implement

either example.

6.3.2 How Delegation Works

One of the key security principles of MULTOS is that any other application or any OS function can not

affect an application. This is enforced stringently by firewalls. So, there is no direct access to an

application’s space by any other. However, the Public memory area is available to all applications and

it is used to pass commands from one application to another. The process is:

 Application receives a command, which will involve delegation

 Application creates a command in Public

 Application delegates to another

 OS activates receiving application

 Receiving application starts executing normally; i.e., looks to Public for a command

 Receiving application process command and exits normally

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

74 MULTOS is a registered trademark of MULTOS Limited.

 OS activates original application, which executes the code line after delegation

One application delegates to another by AID. If the delegation request fails, the OS sets the SW to

0x6A 83.

6.3.3 Approach and Code

The example here has the application delegating one that handles PIN checking. The AID of the

secure message checking application will be 0xF0 00 00 01 and it is expecting a CLA byte of 0x94 and

an INS byte of 0x10. The calling application will need to ensure that all of these conditions are met.

The original application will encrypt the expected PIN with a single DES key, add this to the PIN input

and then delegate to the PIN check application. The receiving application will then decrypt the

incoming value and compare it to the one supplied.

The assumptions used when writing this example are:

 CLA, INS different between the two apps

 encrypted PIN with known single DES key

 value passed using different known DES key

 plaintext PIN format is 4-byte PIN + 4-byte pad 0x55

 DES used in ECB mode

 delegating application has an AID of 0xF0 00 00 02

 PIN check only works as delegate

 PIN check no check case

 AID lengths are agreed values

The two applications must have some data and structures in common. This means that both

applications will both have to have the data given in Figure 73: Delegation Data in Common.

#define PINLEN 8

// PUBLIC STRUCTURE

typedef struct {

 // incoming encrypted PIN

 unsigned char PIN_In[PINLEN];

 // outgoing encrypted PIN

 unsigned char PIN_Chk[PINLEN];

 } pubmem;

#pragma melpublic

pubmem PIN_Data

#pragma melstatic

unsigned char sKeyApplication[PINLEN] = {

 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18

 };

Figure 73: Delegation Data in Common

In addition the applications will need to know the AID of the other. In the case of the original

application it is required to delegate. The receiving application uses the AID of the other in order to

use the primitive Get Delegator AID, which allows an application to tailor its actions based on the

calling application. In the example here the PIN check application will only process the command if

the original application has an AID of 0xF0 00 00 02.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 75

6.3.4 PIN Check Application

Aside from the common data the PIN Check Application also holds the DES key used by the IFD to

encrypt the PIN submitted by the cardholder. It also uses stack based variables, specific to the function

main(), to hold the decrypted PIN and AID checking values.

#define AIDLEN 5

#define ERR_SECURITY 0x6982

#define ERR_FUNCNOTSUPP 0x6A81

#pragma melstatic

unsigned char sKeyIFD[PINLEN] = {

 0xA1, 0xB2, 0xC3, 0xD4, 0xE5, 0xF6, 0x07, 0x18};

// AID entry = length byte + AID value

unsigned char sDelegateFromAID[AIDLEN] = {

 0x04, 0xF0, 0x00, 0x00, 0x02};

void main(void)

{

 unsigned char DelegateActualAID[AIDLEN];

 unsigned char PIN_In_Dec[PINLEN];

 unsigned char PIN_Chk_Dec[PINLEN];

 unsigned char NotDelegate[AIDLEN];

 // CLA, INS checking and CheckCase here

// check to see if delegated to

 GetDelegatorAID(AIDLEN, DelegateActualAID, NotDelegate);

 if (memcmp(DelegateActualAID, sDelegateFromAID, AIDLEN) != 0)

 {

 ExitSW(ERR_FUNCNOTSUPP);

 }

 // if ok, do decryption and compare PIN sent from IFD

 DESECBDecipherMessageNoPad(PINLEN, PIN_Data.PIN_In, sKeyIFD, PIN_In_Dec);

 // PIN from Application

 DESECBDecipherMessageNoPad(PINLEN, PIN_Data.PIN_Chk, sKeyApplication,

PIN_Chk_Dec);

 if (memcmp(PIN_In_Dec, PIN_Chk_Dec, AIDLEN) != 0)

 {

 ExitSW(ERR_SECURITY);

 }

 Exit();

}

Figure 74: Delegation PIN Check Application

6.3.5 Delegating Application

The delegating application creates a valid APDU for the PIN check application. The CLA and INS are

set as expected. The expected PIN is enciphered and is placed in the PIN_Chk memory area of the

PIN_Data pubmem structure. The values PINCLA and PININS are defined such that they match the

requirements of the receiving application.

unsigned char sPIN[PINLEN] = {

 0x04, 0x03, 0x02, 0x01, 0x55, 0x55, 0x55, 0x55

 };

unsigned char sKey[PINLEN] = {

 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

76 MULTOS is a registered trademark of MULTOS Limited.

 };

// AID entry = length byte + AID value

unsigned char sDelegateToAID[AIDLEN] = {

 0x04, 0xF0, 0x00, 0x00, 0x01

 }

void main (void)

{

// CLA, INS checking and Checkcase here

// CREATE COMMAND FOR PIN Checking

CLA = PINCLA;

INS = PININS;

// Add DES EBC enciphered PIN

// len, addr of plaintext, key, addr of ciphertext

DESECBEncipherMessageNoPad(PINLEN, sPIN, sKey, PIN_Data.PIN_Chk);

// Now, delegate

Delegate(sDelegateToAID);

// check on SW returned by PIN Check Application

// SW12 treated as an int

if (SW12 != 0x9000)

{

 // Returns SW as set by PIN Check

 Exit();

}

// More processing

Exit();

}

Figure 75: Delegation and SW Checking

After the delegation request is executed the application checks the value of Status Word. If it is not

the default 0x90 00, the application returns the PIN Check SW.

6.4 Mutual Authentication

The examples given have all assumed that the IFD and chip are valid. However, it is possible for an IFD

and an ICC to verify the validity of the other. This is known as mutual authentication.

6.4.1 Introduction

A chip card will respond to commands sent by any type of device, which can be a simple as a card

reader attached to a PC or as complex as a stand alone kiosks. In short, they can be any kind of IFD.

Similarly, an IFD will attempt to send commands to any inserted card.. In this environment, it can be

important to be able to verify that each component is an authentic one.

The usual method for doing this is to have both parties generate a cryptogram. These are then

swapped. The verification process consists of decrypting the value and then re-encrypting it. The re-

encrypted values are swapped, decrypted and finally compared to the original plain text value. This is

based on having two shared symmetric keys.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 77

6.4.2 Approach and Code

The application code given will decrypt the incoming DES ECB IFD cryptogram, generate a random

number and encrypt it and the decrypted value under another key in DES CBC mode. The CBC IV will

be a random number and will be returned as part of the data. The data will also have 8 bytes of

random value appended to hide the size of the useful information returned. The final step of the

process is to have the IFD return the application random number under the initial DES key in ECB

mode. If it matches the value the application has generated, then the authentication is complete.

There are some assumptions used. They are:

 Keys known

 Incoming data DES ECB

 Outgoing data DES CBC

 CBC IV random number

 IFD aware of all keys and encryption modes

6.4.3 Memory Usage

The application response to the first command will be structured so that the IFD can quickly parse and

verify the response. The response structure will share the public memory area with the incoming IFD

enciphered 8-byte data block. The application generated random number is held as a session data

variable to ensure that it is available over the full command-response dialogue needed to complete

the mutual authentication process. Static memory will hold only the symmetric keys in use.

// PUBLIC STRUCTURE

typedef struct {

 // outgoing encrypted random

 unsigned char RandomApp[BLOCK];

 // outgoing re-encrypted IFD random

 unsigned char RandomIFD[BLOCK];

 // outgoing DES CBC IV

 unsigned char InitValue[BLOCK];

 // outgoing random padding

 unsigned char Pad[BLOCK];

 } auth_response;

#pragma melpublic

union {

 // incoming IFD value

 unsigned char EncryptIFD[BLOCK];

 // authentication response

 auth_response Authenticate;

 } io;

#pragma melsession

// application generated random value

unsigned char dRandomApp[BLOCK];

#pragma melstatic

unsigned char sKeyIFD[BLOCK] = {

 0x7d, 0xd7, 0x7d, 0xd7, 0x7d, 0xd7, 0x7d, 0xd7

 };

unsigned char sKeyApp[BLOCK] = {

 0x8f, 0xf8, 0x8f, 0xf8, 0x8f, 0xf8, 0x8f, 0xf8

 };

Figure 76: Mutual Authentication Memory Use

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

78 MULTOS is a registered trademark of MULTOS Limited.

6.4.4 Response to First Command

Processing the IFD supplied enciphered 8-byte value is the first step. This is followed by the creation of

the structured response.

#define BLOCK 8

void main (void)

{

 // build structure on stack and then copy

 auth_response TempBlock;

 // CLA and INS checking here

 // Check case, ISO Case 4, here

 // Decipher incoming data

 DESECBDecipherMessageNoPad(BLOCK, io.EncryptIFD, sKeyIFD, TempBlock.RandomIFD);

 // generate random numbers for:

 // application random value

 GetRandomNumber(TempBlock.RandomApp);

 // and copy this to session data variable

 memcpy(&dRandomApp, &TempBlock.RandomApp, BLOCK);

 // IV

 GetRandomNumber(TempBlock.InitValue);

 // random padding

 GetRandomNumber(TempBlock.Pad);

 // Do DES CBC Encipherment overwriting plaintext

 // args: length, plain text, IV, key, ciphertext

 DESCBCEncipherMessageNoPad((2 * BLOCK), TempBlock.RandomApp, TempBlock.InitValue,

sKeyApp, TempBlock.RandomApp);

 // Copy temp to public

 memcpy(io.Authenticate.RandomApp, TempBlock.RandomApp, (4 * BLOCK));

 ExitLa((4 * BLOCK));

Figure 77: Mutual Authentication First Response

The code in Figure 77: Mutual Authentication First Response begins with another memory declaration.

This variable TempBock is used to construct the response structure and encipher it before placing it in

public. Note that TempBlock is allocated stack space only when the function main() is executing; i.e.,

its scope is limited to main().

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 79

6.4.5 Response to Second Command

The second command is much simpler than the first in that the application only needs to decipher an

8-byte value and compare it to the expected value. The sample code follows on from Figure 77:

Mutual Authentication First Response.

case INS_VERIFY:

// Checkcase here

 // arg: size, cipher text, key, plaintext (use temp stack)

 DESECBDecipherMessageNoPad(BLOCK, io.EncryptIFD, sKeyIFD, TempBlock.RandomIFD);

 // check that value matches original

 if(memcmp(TempBlock.RandomIFD, dRandomApp, BLOCK) != 0)

 {

 ExitSW(ERR_SECURITY);

 }

 Exit();

Figure 78: Mutual Authentication Final Verification

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

80 MULTOS is a registered trademark of MULTOS Limited.

6.5 Digital Signature Generation

Digital signatures are the basis of Public Key Infrastructure or PKI. They make use of hash digests and

RSA.

6.5.1 Introduction

A digital signature is used to guarantee both the integrity of the message content as well as its origin.

The integrity is guaranteed by using the message content as input to a one way hashing algorithm.

This value is the signed producing the digital signature.

The signing procedure is done using a cryptographic key. The signing key is one of a unique pair and

only the corresponding signature verification key will be able to reveal the underlying plain text. This

one-to-one correspondence of signing and verifying keys is what guarantees the origin of the

message. If someone attempted to use a non-matching key, the verification would fail. Therefore, if

the verification succeeds, then you can conclude that the sender is in possession of the corresponding

key. In the case of the private key, this means that the holder sent the message. In the case of the

public key, this means that the message is intended for the party holding the private key.

6.5.2 Approach and Code

The code takes a 72-byte input message, calculates a SHA-1 digest of it and signs the digest. The

input size has been set so that the sample code can highlight the creation of the message digest as

well as signature generation or verification. The key pair used has a 576-bit, or 72-byte, modulus size.

The concepts illustrated in the code can be modified to work with longer key lengths.

The signature will be calculated over a structure that has the same length as the modulus. There are

two reasons for this. The first is that the underlying MULTOS primitive, Modular Exponentiation

accepts the modulus length as an argument and expects the modulus, input message and out

message as having the same length. The second is that it is significantly easier to check a structure

with know values and offsets. The original message plus the signature will be returned in a certificate

structure.

6.5.3 Memory Usage

More memory is required for generating a digital signature because of the need to hold the private

and public keys. It is also necessary to handle messages input as well.

// PUBLIC / PRIVATE KEY PAIR

#include "ma_pubkey.h"

#undef MODLEN // required by compiler

#undef EXPLEN // required by compiler

#include "ma_privkey.h"

#define BLOCK 72

#define HASHSZ 20

#define PADSZ 8

// PUBLIC STRUCTURE

typedef struct {

 // plaintext data

 unsigned char Data[BLOCK];

 // plaintext data signature

 unsigned char Signature[BLOCK];

 } certificate;

typedef struct {

 unsigned char MSByte[1];

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 81

 unsigned char HashDigest[HASHSZ];

 unsigned char Padding[(BLOCK - ((2 * PADSZ) + HASHSZ + 1))];

 unsigned char RandomPad[PADSZ];

 unsigned char FixedPad[PADSZ];

 } unencrypted_signature;

#pragma melpublic

certificate pData;

#pragma melstatic

void main (void)

{

 // build structure on stack

 unencrypted_signature Sign;

 // stack space needed to hold verify digest

 unsigned char CalculatedDigest[HASHSZ];

 // more main()…

Figure 79: Digital Signature Memory Declarations

As can be seen from the memory declarations a certificate structure is the original input message plus

the message signature. The stack is used to construct the value to be signed as well as to hold any

incoming signature for verification. There is also space to hold an application calculated hash digest

over the plain text message so that it can be compared to the value held as part of the application

signature.

6.5.4 Generating the Digital Signature

Generating the digital signature consists of the following steps:

 Generate a 20-byte SHA-1 hash digest of the input message

 Set the most significant byte to 0x55

 Generating fixed and random padding elements

 Signs the completed unencrypted_signature structure using modular exponentiation

 Copies the resulting signature to Public

 Exits

// arguments: size, output, input

SHA1(BLOCK, Sign.HashDigest, pData.Data);

// set MS Byte

Sign.MSByte[0] = 0x55;

// build fixed padding

memset(Sign.FixedPad, 0x55, PADSZ);

// build random padding

GetRandomNumber(Sign.RandomPad);

// do rest of padding

memset(Sign.Padding, 0x55, (BLOCK - ((2 * PADSZ) + HASHSZ)));

// encrypt signature data overwriting input

// Modular Exponentiation using Chinese Remainder Theorem

// arguments: modulus length, dpdq, pqu, base, result

ModularExponentiationCRT(MODLEN,privateKey.dp, privateKey.p, Sign.MSByte, Sign.MSByte);

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

82 MULTOS is a registered trademark of MULTOS Limited.

// copy result to public

memcpy(&pData.Signature, &Sign.MSByte, BLOCK);

ExitLa((2 * BLOCK));

Figure 80: Digital Signature Generation

Current MULTOS implementations require that the most significant bit of the most significant byte of

the modulus be set. That is, the smallest value of that byte must be 0x80. For modular exponentiation

to work as intended the input message, treated as a very large integer, must be smaller than the very

large integer value of the modulus. The sample code ensures that this is the case by setting the

unencrypted_signature structure most significant byte value to 0x55.

Modular exponentiation is done using Chinese Remainder Theorem. It is generally faster than not

using CRT because the key components used contain partially calculated values.

6.5.5 Verifying a Digital Signature

The verification process is done using the following steps:

 Copies the message signature to the stack

 Reverses the private key encryption using modular exponentiation with the public key

 Calculates a 20-byte SHA-1 hash digest of the input message in public

 Compares the calculated value to the one held in the unencrypted_signature structure

// copy signature to stack

memcpy(&Sign.MSByte, &pData.Signature, BLOCK);

// decrypt signature block using modular cube

// arguments: exponent length, modulus length, exponent address,

// modulus address, base address, address of result

ModularExponentiation(EXPLEN, MODLEN, publicKey.e, publicKey.m, Sign.MSByte,

Sign.MSByte);

// calculate AHASH digest of input data

// arguments: size, output, input

SHA1(BLOCK, CalculatedDigest, pData.Data);

// do memory compare

if (memcmp(&CalculatedDigest, &Sign.HashDigest, HASHSZ) != 0)

{

 ExitSW(ERR_SECURITY);

}

Exit();

Figure 81: Digital Signature Verification

6.6 Simplified Miller-Rabin Probalistic Primality Test

When working with asymmetric cryptography prime numbers are required to generate the key pair.

The strength of the keys is based on the fact that they are generated from prime numbers.

6.6.1 Introduction

Now, a prime number is one that only has itself and one as factors. So, one way to see if a number, x,

is prime is to see if any number greater than one and less than x divides it. So, for example, the

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 83

number 6 is not prime because it is divisible by both 2 and 3. On the other hand, the number 7 is

prime because it is not divisible by any number less than itself.

In simple cases it is easy to factor the numbers. Furthermore, modern personal computers can be

programmed to factor large numbers. This means that for the cryptographic keys based on primes to

be secure they must be very large numbers and they are. In most cases the numbers are represented

as hexadecimal integers with a length between 72 and 128 bytes; i.e., with a value between 2
576

 and

2
1025

 – 1. Attempting to factor these numbers, even using sophisticated algorithms, is a very difficult

and time-consuming process.

There are, however, algorithms that do not attempt to factor these numbers, but rather submits them

to a series of mathematical tests. If these tests are passed, then there is a high degree of confidence

that the number is prime. One such algorithm is the Miller-Rabin.

6.6.2 Approach and Code

For this example the algorithm was already specified in [FIPS186]. So, the main questions concerned

implementation.

The application has been written to test candidate primes of any size up to 128 bytes. For this reason

the different static memory areas were set to that size. Also, when using macros that take as their

argument a size, the size must be constant and have the same value for both operands. So, a lot of

the code handles data blocks of 128 bytes even when a smaller length might be more appropriate.

In MULTOS the most significant byte is the one at the lowest byte address, so in order to represent

large numbers properly and to handle correctly operations where the operands may not be of the

same size offsets within the memory blocks need to be calculated. To do this a piece of session data,

dOffset, is used. This value is the length of the candidate prime subtracted from the total block size.

For example, if we wished to hold and to represent properly a 72-byte number in a 128-byte block,

the first 56 bytes would be 0x00 and the remaining bytes would hold the number. That is, the

starting offset for the number would be 56 because bytes 0 to 55 are 0.

6.6.3 Calculating w = 1 + 2
a
m

One of the first steps in the algorithm is to treat the candidate prime, w, such that

w = 1 + 2
a
m, where m is odd and 2

a
 is the largest power of 2 dividing w – 1. So, for example, if w =

7, then a = 1, because 2 divides 6 and if w = 25, then a = 3 because 8 divides 24. In order to

implement this it is required to:

 Copy the candidate prime to work buffer

 Decrease that value by one

 Calculate the a and m values

The first two steps are easy as can be seen in Figure 82: Miller-Rabin 2^a Calculation. There are some

points to make about the memory copy. The first is that sPrime is the static memory location of the

candidate prime and sW is the static buffer used to allow data manipulation without changing the

value of the number. When the candidate prime is submitted for checking its length is given in the

APDU Lc value. So, the memory copy uses that value for the copy.

At first glance the last step would seem to involve repeated use of division; however, if the number is

considered in its binary representation it can be calculated without using division. This is because

division by 2 is simply a right shift operation and each shift represents a power of two. Now, since the

number under investigation, w – 1, is even a can be calculated by right shifting the binary

representation until the least significant bit is set; i.e., until the remaining value is odd. So, in order to

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

84 MULTOS is a registered trademark of MULTOS Limited.

arrive at a it is enough to count the number of right shift operations done until an odd value is the

result. This odd value is also of use as it the m value.

Take as an example w = 25. Clearly, w – 1 = 24, or when expressed as a byte is 0x18, which in binary

notation, most significant bit is the leftmost, is 0001 1000. One right shift gives,

0000 1100, another gives 0000 0110 and a third gives 0000 0011. So, here a = 3 and m = 3. To

check the values are substituted into the original equation, which gives 25 = 1 + (3 * (2
3
)).

In the application code, the candidate prime value is passed through a do – while loop structure and a

check is made to see if the result of the right shift is odd. In that loop the value of a is incremented in

each pass. The variable used is another piece of session data, an unsigned integer dA. An integer is

used because the a value is used as a test in a for loop later in the program. There is also a test to

check if the result is odd.

In binary representation a number is odd if the least significant bit is set. The code in Figure 82: Miller-

Rabin 2^a Calculation does the following:

 Copies the last byte of the result to a stack based variable dCmp

 Does an OR operation with a mask of 0xFE

 Compares the result of the OR to 0xFF

 If the memory compare returns true, then the number is odd. Otherwise, another pass through

the do – while loop is required.

For example, if the last byte had a value of 0x01, then 0xFE OR 0x01 gives 0xFF and the number is

odd. On the other hand if the last byte were 0x02 the OR operation would result in 0xFE.

#define MAXPRIMESZ 128

// STATIC MEMORY AREAS

unsigned char sPrime[MAXPRIMESZ];

unsigned char sW[MAXPRIMESZ];

// FUNCTION SPECIFIC STACK BASED VALUES

unsigned char compare = {0xFF}, ormask = {0xFE};

// FUNCTION CODE EXCERPT

// w = 1 + (2^a)m, m is odd, (2^a) largest value dividing w - 1

memcpy(&sW[dOffset], &sPrime[dOffset], Lc);

// to get w - 1 we decrement the value of w

DECN(MAXPRIMESZ, &sW);

do{

 // clear dCmp don't want the value from previous iteration

 dCmp = 0;

 // do right shift by 1 bit

 ASSIGN_SHRN(MAXPRIMESZ, sW, 1);

 // increment counter

 dA++;

 // do odd test by testing LS bit of LS byte

 // copy last byte

 COPYN(1, &dCmp, &sW[(MAXPRIMESZ – 1)]);

 ORN(1, &dCmp, &ormask, &dCmp);

} while (memcmp(&dCmp, &compare, 1) != 0);

Figure 82: Miller-Rabin 2^a Calculation

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 85

6.6.4 Generate Random b: 1 < b < w

The generation of a random number is simple because MULTOS provides a primitive to do so. The

code excerpt in Figure 83: Miller-Rabin Random Number Generation does the following:

 Increments a try counter. This allows the program to exit the do – while loop and give an error

message.

 Checks the size of the prime to be generated. If the candidate prime is less than 8 bytes, a

random number is generated of the same length. If the number is greater than or equal to 8

bytes in length, the generated random number is at most the same size as the number.

 The primitive writes the random value to a temporary buffer and this value is copied to the

static memory area sB using a calculated offset.

 Checks that the random value is less than the candidate prime.

#define TRYMAX 6

#define err_SMRB 0x6555 // couldn't generate a value b within try max

// STATIC MEMORY

unsigned char sB[MAXPRIMESZ]; // random number for SMR

// now we need a number, b, such that 1 < b < w

// FUNCTION SPECIFIC VARIABLES

int n;

unsigned char temp[8];

do{

 dCtr++;

 if(dCtr > TRYMAX)

 {

 ExitSW(err_SMRB);

 }

 // should work for primes of any size

 if (Lc < 8)

 {

 GetRandomNumber(temp);

 memcpy(&sB[dOffset], &temp[(8 - Lc)], Lc);

 }

 else

 {

 for (n = 0; ((n + 1) * 8) <= Lc; n++)

 {

 GetRandomNumber(temp);

 memcpy(&sB[((MAXPRIMESZ - 8) - (8*n))], temp, 8);

 }

 }

} while (memcmp(&sW, &sB, MAXPRIMESZ) < 0);

Figure 83: Miller-Rabin Random Number Generation

6.6.5 Testing z = b
m

 mod w

After calculating a and m, and generating b the primality test can be done. The first step is to see if

z = b
m

 mod w = w – 1 or if z = b
m

 mod w = 1. If so, then a for loop, which stops after a iterations,

carries out further tests on the value z = z
2
 mod w. If during the execution of the loop z = 1, the

number is not prime. If a candidate number fails at any point during the loop processing it is rejected.

The code excerpt that follows is the last stage of a Simplified Miller-Rabin function that was called by

main. The return values given are integers that are treated as boolean. The test function also calls

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

86 MULTOS is a registered trademark of MULTOS Limited.

another function, ModCheck, which compares the result in sZ to a stack based 128-byte

representation of 1. If z = 1, ModCheck returns true.

#define TRUE 1

#define FALSE 0

// SESSION DATA

unsigned int dA;

// STATIC MEMORY

unsigned char sW[MAXPRIMESZ]; // to hold sPrime for computations

unsigned char sM[MAXPRIMESZ]; // will be exponent for SMR test

unsigned char sB[MAXPRIMESZ]; // random number for SMR

unsigned char sZ[MAXPRIMESZ]; // to hold test value

// Do modular exponentiation test

// z = b^m mod prime, need to decrement w to allow z = w - 1 test

DECN(MAXPRIMESZ, &sW);

// do first test before looping

// modexp(size of exponent, size of modulus, address of exp, address of mod, address of

b, address of result

ModularExponentiation(MAXPRIMESZ, Lc, &sM[0], &sPrime[dOffset], &sB[dOffset],

&sZ[dOffset]);

// if z = w -1

if (memcmp(&sZ, &sW, MAXPRIMESZ) == 0)

{

 return TRUE;

}

// if z = 1

// if ModCheck = True then whole z = w - 1

if (ModCheck() == TRUE)

{

 return TRUE;

}

// once m is used in first test it isn't needed again

// so reuse that memory space for the modular exponentiation exponent

CLEARN(MAXPRIMESZ, &sM);

sM[0] = 0x02;

// reuse n as counter variable

for (n = 1; n < dA; n++)

{

 // z = z^2 mod prime

 // do mod exp test overwriting Z with result

 ModularExponentiation(1, Lc, sM, &sPrime[dOffset], &sZ[dOffset], &sZ[dOffset]);

 // if z = 1, then not prime

 if(ModCheck() == TRUE)

 {

 return FALSE;

 }

 // if z = w - 1 then prime

 if (memcmp(&sZ, &sW, MAXPRIMESZ) == 0)

 {

 return TRUE;

 }

}

// unreachable return with default value of false

return FALSE;

}

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 87

// checking to see if z = 1

int ModCheck(void)

{

 // will be intialised to all 0

 unsigned char one[MAXPRIMESZ];

 INCN(MAXPRIMESZ, &one);

 if (memcmp(&one, &sZ, MAXPRIMESZ) == 0)

 {

 return TRUE;

 }

 else

 {

 return FALSE;

 }

}

Figure 84: Miller-Rabin Modular Exponentiation Tests

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

88 MULTOS is a registered trademark of MULTOS Limited.

6.7 A Note on Combining Techniques

Each of the previous sections has looked at particular techniques. However, there may be a need to

combine the different techniques. This would most likely result in more complex data structures, but

the code examples given should be easily adaptable.

A sample command-response dialogue could consist of the following steps:

 Mutual authentication of terminal and ICC

 PIN check using secure messaging

 Check integrity of static memory area using secure messaging

 Write data using secure messaging

A complex interaction between a chip card application and an IFD can be constructed using the

different components explained here. The MULTOS tool set as embodied in the instructions and

primitives found in the [MDRM] provides a good basis for building an application that can process

data in almost any way desired.

MDG

© 2021 MULTOS Limited. MAO-DOC-TEC-005 v1.43

MULTOS is a registered trademark of MULTOS Limited. 89

6.8 Standard ASM Header File

The following is the contents of the file “standard.asm” and is used for all of the assembly language

examples in this document. It can be used freely.

//===

// MULTOS AAM Standard Declarations

//

// (c) 1998 - 2006, MAOSCO Ltd.

//===

//===

// PUBLIC area references

//===

pProtocolFlags EQU PT[-0017]

pProtocolType EQU PT[-16]

pGetResponseCLA EQU PT[-15]

pGetResponseSW1 EQU PT[-14]

pCLA EQU PT[-13]

pINS EQU PT[-12]

pP1 EQU PT[-11]

pP2 EQU PT[-10]

pP3 EQU PT[-9]

pLc EQU PT[-8]

pLe EQU PT[-6]

pLa EQU PT[-4]

pSW1 EQU PT[-2]

pSW2 EQU PT[-1]

cCmdDataRxd EQU 0x08

cValidLe EQU 0x04

cValidLc EQU 0x02

cValidP3 EQU 0x01

//===

// Status Word responses

//===

cWRN_MemoryUnhanged EQU 0x62

cWRN_MemoryChanged EQU 0x63

cERR_MemoryUnhanged EQU 0x64

cERR_MemoryChanged EQU 0x65

cERR_WrongLength EQU 0x67

cERR_CLAFnNotSupported EQU 0x68

cERR_CommandNotAllowed EQU 0x69

cERR_WrongParamsP1P2A EQU 0x6A

cERR_WrongParamsP1P2B EQU 0x6B

cERR_InvalidINSCodeC EQU 0x6C

cERR_InvalidINSCodeD EQU 0x6D

cERR_ClassNotSupported EQU 0x6E

cNoAdditional EQU 0x00

cMemoryFailure EQU 0x81

cIncompatibleFileStruct EQU 0x81

cFunctionNotSupported EQU 0x81

cFileNotFound EQU 0x82

cRecordNotFound EQU 0x83

//===

// Primitive Number Declarations

//===

MULTOS Developer’s Guide

MAO-DOC-TEC-005 v1.43 © 2021 MULTOS Limited.

90 MULTOS is a registered trademark of MULTOS Limited.

prmBitManipulateByte EQU 0x01

prmBitManipulateWord EQU 0x01

prmCheckCase EQU 0x01

prmDivideN EQU 0x08

prmGetDIRFileRecord EQU 0x09

prmGetFileControlInformation EQU 0x0A

prmGetManufacturerData EQU 0x0B

prmGetMULTOSData EQU 0x0C

prmHetMemoryReliable EQU 0x09

prmGetPurseType EQU 0x02

prmLoadCCR EQU 0x05

prmLookup EQU 0x0A

prmMemoryCompare EQU 0x0B

prmMemoryCompareFixedLength EQU 0x0F

prmMemoryCopy EQU 0x0C

prmMemoryCopyFixedLength EQU 0x0E

prmMultiplyN EQU 0x10

prmQuery0 EQU 0x00

prmQuery1 EQU 0x01

prmQuery2 EQU 0x02

prmQuery3 EQU 0x03

prmResetWWT EQU 0x02

prmSetATRFileRecord EQU 0x07

prmSetATRHistoricalCharacters EQU 0x08

prmShiftLeft EQU 0x02

prmShiftRight EQU 0x02

prmStoreCCR EQU 0x06

prmDESECBDecipher EQU 0xC5

prmDESECBEncipher EQU 0xC1

prmGenerateAsymmetricHash EQU 0xC4

prmUseDefaultIV EQU 0

prmUseGivenIV EQU 1

prmDelegate EQU 0x80

prmXOR EQU 0x00

prmEQU EQU 0x80

prmOR EQU 0x40

prmAND EQU 0xC0

prmCMP EQU 0x00

prmModify EQU 0x01

BitManipulateByte MACRO Option;Mask

 PRIM 0x01,Option,Mask

 ENDMACRO

CheckCase MACRO ISOCase

 PUSHB ISOCase

 PRIM prmCheckCase

 ENDMACRO

Delegate MACRO AID

 LOADA AID

 PRIM prmDelegate

 ENDMACRO

LoadCCR MACRO

 PRIM prmLoadCCR

 ENDMACRO

----- End of Document ----

